Home
Class 12
MATHS
If y = cos^(-1) ((2cos x - 3 sin x)/(sqr...

If `y = cos^(-1) ((2cos x - 3 sin x)/(sqrt(13))), " then" (dy)/(dx) ` is equal to

A

1

B

0

C

constant ` (ne 1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1} \left( \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \right) \), we will follow these steps: ### Step 1: Differentiate using the chain rule We start by applying the chain rule for differentiation. The derivative of \( \cos^{-1}(u) \) is given by: \[ \frac{d}{dx} \left( \cos^{-1}(u) \right) = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \). ### Step 2: Find \( u \) and its derivative \( \frac{du}{dx} \) Now, we need to differentiate \( u \): \[ u = \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \] To find \( \frac{du}{dx} \), we differentiate the numerator: \[ \frac{du}{dx} = \frac{d}{dx}(2 \cos x - 3 \sin x) \cdot \frac{1}{\sqrt{13}} \] Calculating the derivative of the numerator: \[ \frac{d}{dx}(2 \cos x) = -2 \sin x \] \[ \frac{d}{dx}(-3 \sin x) = -3 \cos x \] Thus, \[ \frac{du}{dx} = \frac{-2 \sin x - 3 \cos x}{\sqrt{13}} \] ### Step 3: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now substituting \( u \) and \( \frac{du}{dx} \) into the derivative of \( y \): \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] We need to calculate \( 1 - u^2 \): \[ u^2 = \left( \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \right)^2 = \frac{(2 \cos x - 3 \sin x)^2}{13} \] Calculating \( (2 \cos x - 3 \sin x)^2 \): \[ (2 \cos x - 3 \sin x)^2 = 4 \cos^2 x - 12 \cos x \sin x + 9 \sin^2 x \] Thus, \[ 1 - u^2 = 1 - \frac{4 \cos^2 x - 12 \cos x \sin x + 9 \sin^2 x}{13} \] This can be simplified to: \[ 1 - u^2 = \frac{13 - (4 \cos^2 x - 12 \cos x \sin x + 9 \sin^2 x)}{13} \] \[ = \frac{13 - 4 \cos^2 x - 9 \sin^2 x + 12 \cos x \sin x}{13} \] ### Step 4: Final expression for \( \frac{dy}{dx} \) Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \frac{(2 \cos x - 3 \sin x)^2}{13}}} \cdot \frac{-2 \sin x - 3 \cos x}{\sqrt{13}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2 \sin x + 3 \cos x}{\sqrt{13} \sqrt{1 - \frac{(2 \cos x - 3 \sin x)^2}{13}}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2 \sin x + 3 \cos x}{\sqrt{13 - (2 \cos x - 3 \sin x)^2}} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1} \left( \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \right) \), we will follow these steps: ### Step 1: Differentiate using the chain rule We start by applying the chain rule for differentiation. The derivative of \( \cos^{-1}(u) \) is given by: \[ \frac{d}{dx} \left( \cos^{-1}(u) \right) = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{2 \cos x - 3 \sin x}{\sqrt{13}} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=cos ^(-1) ((3cos x-2sin x )/( sqrt(13))),then (dy)/(dx)=

If y=cos ^(-1) ((cos x+ sin x )/(sqrt( 2))),then (dy)/(dx)=

If y= sin ^(-1) ((cos x +sin x)/( sqrt2)) ,then (dy)/(dx)=

Let 2y={(cot^(-1)(sqrt(3)cos x-sin x))/(cos x+sqrt(3)sin x))^(2) then (dy)/(dx) is equal to (A) x-(pi)/(6)(B)x+(pi)/(6)(C)2x-(pi)/(6)(D)2x-(pi)/(3)])

If y= cos ^(-1)((sqrt 3cos x+ sin x )/( 2 )) ,then (dy)/(dx) =

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y = sqrt((1+ sin x)/(1+ cos x)), " then" (dy)/(dx) is equal to

If y=cos^(-1){(2x-3sqrt(1-x^(2)))/(sqrt(13))}, find (dy)/(dx)

If y = log_(cos x) sin x " then" (dy)/(dx) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If y=tan^(-1)1/(1+x+x^2)+tan^(-1)1/(x^2+3x+3)+tan^(-1)1/(x^2+5x+7)++ u...

    Text Solution

    |

  2. If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to

    Text Solution

    |

  3. If y = cos^(-1) ((2cos x - 3 sin x)/(sqrt(13))), " then" (dy)/(dx) i...

    Text Solution

    |

  4. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  5. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  6. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  7. if y=sin^-1[sqrt(x-ax)-sqrt(a-ax)] then prove that 1/(2sqrtx sqrt(1-x)...

    Text Solution

    |

  8. If y=log(x^(2)+4)(7x^(2)-5x+1), then (dy)/(dx) is equal to

    Text Solution

    |

  9. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  10. If x^(2) + y^(2) = a^(2) , then a is equal to

    Text Solution

    |

  11. Let f(x) be a polynomial.Then, the second order derivative of f(e^x) i...

    Text Solution

    |

  12. If y = sin^(n) x cos nx, " then" (dy)/(dx) is

    Text Solution

    |

  13. If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x...

    Text Solution

    |

  14. If f(x)=(g(x)+g(-x))/2 + 2/[h(x)+h(-x)]^(-1), where g and h are diffe...

    Text Solution

    |

  15. If y = e^(x) * e^(x^(2)) *e^(x^(3) )*...*e^(x^(n))..., " for " - lt x ...

    Text Solution

    |

  16. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  17. If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. (d^2x)/(d y^2) equals

    Text Solution

    |

  20. If x=sint and y=cos pt, then

    Text Solution

    |