Home
Class 12
MATHS
If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(1...

If` f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -1)^(7))/(28) + ... `
where ` 0 lt x lt 2 ` , then f'(x) is equal to

A

`(1)/(4x(2-x)) `

B

`(1)/(4(x-2)^(2))`

C

`(1)/(2-x)`

D

`(1)/(2+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \[ f(x) = \frac{x - 1}{4} + \frac{(x - 1)^2}{12} + \frac{(x - 1)^5}{20} + \frac{(x - 1)^7}{28} + \ldots \] we can observe that this series can be expressed in a more manageable form. ### Step 1: Recognize the Series The series can be rewritten in terms of a general term. The general term appears to be: \[ \frac{(x - 1)^{n}}{a_n} \] where \( n \) takes on odd values (1, 2, 5, 7, ...), and \( a_n \) is a sequence of coefficients (4, 12, 20, 28, ...). ### Step 2: Identify the Pattern The coefficients can be recognized as: - \( a_1 = 4 = 2 \times 2 \) - \( a_2 = 12 = 3 \times 4 \) - \( a_3 = 20 = 4 \times 5 \) - \( a_4 = 28 = 4 \times 7 \) This suggests that the series might be related to a logarithmic function. ### Step 3: Relate to Logarithmic Expansion The series can be recognized as a Taylor series expansion of a logarithmic function. Specifically, the series resembles the expansion of: \[ \log\left(\frac{1+t}{1-t}\right) = 2\left(t + \frac{t^3}{3} + \frac{t^5}{5} + \ldots\right) \] where \( t = x - 1 \). ### Step 4: Express \( f(x) \) Thus, we can express \( f(x) \) as: \[ f(x) = \frac{1}{8} \log\left(\frac{1 + (x-1)}{1 - (x-1)}\right) = \frac{1}{8} \log\left(\frac{x}{2 - x}\right) \] ### Step 5: Differentiate \( f(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = \frac{1}{8} \cdot \frac{d}{dx} \left( \log\left(\frac{x}{2 - x}\right) \right) \] Using the chain rule, we have: \[ f'(x) = \frac{1}{8} \cdot \frac{1}{\frac{x}{2-x}} \cdot \frac{d}{dx}\left(\frac{x}{2 - x}\right) \] ### Step 6: Differentiate the Inner Function To differentiate \( \frac{x}{2-x} \), we use the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{2 - x}\right) = \frac{(2-x)(1) - x(-1)}{(2-x)^2} = \frac{2 - x + x}{(2-x)^2} = \frac{2}{(2-x)^2} \] ### Step 7: Combine the Results Now substituting back, we get: \[ f'(x) = \frac{1}{8} \cdot \frac{2}{\frac{x}{2-x}} \cdot \frac{2}{(2-x)^2} = \frac{1}{4} \cdot \frac{2(2-x)}{x(2-x)^2} \] ### Final Result Thus, simplifying gives us: \[ f'(x) = \frac{2(2-x)}{4x(2-x)^2} = \frac{2 - x}{2x(2-x)} \] ### Summary The derivative \( f'(x) \) is: \[ f'(x) = \frac{2 - x}{2x(2 - x)} \]

To find the derivative \( f'(x) \) of the function \[ f(x) = \frac{x - 1}{4} + \frac{(x - 1)^2}{12} + \frac{(x - 1)^5}{20} + \frac{(x - 1)^7}{28} + \ldots \] we can observe that this series can be expressed in a more manageable form. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

If f(x)=x-x^2+x^3-x^4+... where |x| lt 1 , then: f^-1(x)=

Let f(x) = {{:(,x +1,"where " x lt 2),(,2x -1,"where" x ge 2):} then f(2) is equal to

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

If f(x^(2) - 4x + 4) = x^(2) + 1 . Find f(1) if f(1) lt 8 .

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x) = log ((1+x)/(1-x)) , where -1 lt x lt 1 then f((3x+x^(2))/(1+3x^(2))) - f((2x)/(1+x^(2))) is equal to

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  2. If x^(2) + y^(2) = a^(2) , then a is equal to

    Text Solution

    |

  3. Let f(x) be a polynomial.Then, the second order derivative of f(e^x) i...

    Text Solution

    |

  4. If y = sin^(n) x cos nx, " then" (dy)/(dx) is

    Text Solution

    |

  5. If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x...

    Text Solution

    |

  6. If f(x)=(g(x)+g(-x))/2 + 2/[h(x)+h(-x)]^(-1), where g and h are diffe...

    Text Solution

    |

  7. If y = e^(x) * e^(x^(2)) *e^(x^(3) )*...*e^(x^(n))..., " for " - lt x ...

    Text Solution

    |

  8. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  9. If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -...

    Text Solution

    |

  10. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  11. (d^2x)/(d y^2) equals

    Text Solution

    |

  12. If x=sint and y=cos pt, then

    Text Solution

    |

  13. If a=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

    Text Solution

    |

  14. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  15. If y=(1)/(4)u^(4),u=(2)/(3)x^(3)+5, then (dy)/(dx)=

    Text Solution

    |

  16. If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to......

    Text Solution

    |

  17. If y = sqrt(((x-a)(x-b))/((x-c)(x-d))), " then " (dy)/(dx) is equal t...

    Text Solution

    |

  18. Find the derivative of f(tanx) w.r.t. g(secx) at x=pi/4 , where f^(pri...

    Text Solution

    |

  19. If y^2 = p ( x ), a polynomial of degree 3, then 2 d/(dx) (y^3 (d^2y)/...

    Text Solution

    |

  20. Find (dy)/(dx) , when x=e^(theta)(theta+1/theta) and y=e^(-theta)(thet...

    Text Solution

    |