Home
Class 12
MATHS
Three expressions are given below : ...

Three expressions are given below :
`Q_(1)=sin(A+B)+sin(B+C)+sin(C+A)`
`Q_(2)=cos(A-B)+cos(B-C)+cos(C-A)`
`Q_(3)=sinA(cosB+cosC)+sinB(cosC+cosA)+sinC(cosA+cosB)`
Which one the following is correct ?

A

`Q_(1)=Q_(2)`

B

`Q_(2)=Q_(3)`

C

`Q_(1)=Q_(3)`

D

All the expressions are different

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three given expressions \( Q_1 \), \( Q_2 \), and \( Q_3 \) and determine which one is correct. ### Step 1: Analyze \( Q_1 \) The first expression is: \[ Q_1 = \sin(A + B) + \sin(B + C) + \sin(C + A) \] Using the sine addition formula, we can expand each term: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] \[ \sin(B + C) = \sin B \cos C + \cos B \sin C \] \[ \sin(C + A) = \sin C \cos A + \cos C \sin A \] Combining these, we have: \[ Q_1 = (\sin A \cos B + \cos A \sin B) + (\sin B \cos C + \cos B \sin C) + (\sin C \cos A + \cos C \sin A) \] ### Step 2: Analyze \( Q_2 \) The second expression is: \[ Q_2 = \cos(A - B) + \cos(B - C) + \cos(C - A) \] Using the cosine subtraction formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] \[ \cos(B - C) = \cos B \cos C + \sin B \sin C \] \[ \cos(C - A) = \cos C \cos A + \sin C \sin A \] Combining these, we have: \[ Q_2 = (\cos A \cos B + \sin A \sin B) + (\cos B \cos C + \sin B \sin C) + (\cos C \cos A + \sin C \sin A) \] ### Step 3: Analyze \( Q_3 \) The third expression is: \[ Q_3 = \sin A (\cos B + \cos C) + \sin B (\cos C + \cos A) + \sin C (\cos A + \cos B) \] This expression is already in a simplified form, but we can rearrange it: \[ Q_3 = \sin A \cos B + \sin A \cos C + \sin B \cos C + \sin B \cos A + \sin C \cos A + \sin C \cos B \] ### Step 4: Compare the Expressions Now, we can compare \( Q_1 \) and \( Q_3 \): - From the expansions, we see that both \( Q_1 \) and \( Q_3 \) consist of similar terms: \[ Q_1 = \sin A \cos B + \sin B \cos C + \sin C \cos A + \cos A \sin B + \cos B \sin C + \cos C \sin A \] \[ Q_3 = \sin A \cos B + \sin A \cos C + \sin B \cos C + \sin B \cos A + \sin C \cos A + \sin C \cos B \] Thus, we can conclude that: \[ Q_1 = Q_3 \] ### Conclusion Since \( Q_1 \) is equal to \( Q_3 \), we find that: - \( Q_1 = Q_3 \) - \( Q_2 \) does not equal \( Q_1 \) or \( Q_3 \). Thus, the correct answer is that \( Q_1 \) and \( Q_3 \) are equal. ### Final Answer The correct option is \( Q_1 = Q_3 \).

To solve the problem, we need to analyze the three given expressions \( Q_1 \), \( Q_2 \), and \( Q_3 \) and determine which one is correct. ### Step 1: Analyze \( Q_1 \) The first expression is: \[ Q_1 = \sin(A + B) + \sin(B + C) + \sin(C + A) \] ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

Prove that (sin(B-C))/(cosB cosC)+(sin(C-A))/(cosC cosA)+(sin(A-B))/(cosA cosB) =0 .

If A + B + C = 180 ^ @ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

Multiply sin(A+B)=sinA cosB+ cos A sinB and sin(A-B)=sinA cosB - cosA sin B

If |[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0 , then B=

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

NDA PREVIOUS YEARS-TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS-MCQ
  1. A positive acute angle is divided into two parts whose tangents are (...

    Text Solution

    |

  2. If an angle B is complement of an angle A, what are the greatest and l...

    Text Solution

    |

  3. Three expressions are given below : Q(1)=sin(A+B)+sin(B+C)+sin(C...

    Text Solution

    |

  4. For what values of x is the equation 2sintheta=x+(1)/(x) valid?

    Text Solution

    |

  5. If sin(picosx)=cos(pisinx), then what is one of the values of sin 2x...

    Text Solution

    |

  6. In a triangle ABC , if cos A = cos B cos C , what is the value of tan ...

    Text Solution

    |

  7. sqrt(3)cossec2 0^0-sec2 0^0

    Text Solution

    |

  8. Let 45^(@)lethetalt90^(@) . iftan theta+cottheta=(tan theta)^("i")+(c...

    Text Solution

    |

  9. Given that tantheta=mne0, tan2 theta=n ne0and tantheta+tan2theta=tan3...

    Text Solution

    |

  10. Let A and B be obtuse angles such that sinA=(4)/(5)andcosB=-(12)/(13...

    Text Solution

    |

  11. If tan^(2)B=(1-sinA)/(1+sinA) then what is the value of A+2B ?

    Text Solution

    |

  12. Given that cos20^(@)-sin20^(@)=p , then what is the value of sin 40^(...

    Text Solution

    |

  13. Given that p = tanalpha+tanbeta, andq=cotalpha+cotbeta, then what is ...

    Text Solution

    |

  14. A is a certain positive acute angle which satisfies the following equ...

    Text Solution

    |

  15. If sin^(3)theta+cos^(3)theta=0, then what is the value of theta ?

    Text Solution

    |

  16. What is the value of ("cosec "(pi+theta)cot{(9pi//2-theta)}"cose...

    Text Solution

    |

  17. What is the value of sin(A+B)sin(A-B)+sin(B+C)sin(B-C)+sin(C+A)sin(C-...

    Text Solution

    |

  18. Given that tanalpha=m//(m+1),tanbeta=1//(2m+1), then what is the value...

    Text Solution

    |

  19. If x=r sinthetacosphi, y =r sin thetasinphiandz=rcostheta, then x^(2)...

    Text Solution

    |

  20. Minimum value of cos2theta+costheta for all real value of theta is

    Text Solution

    |