Home
Class 12
MATHS
What is the value of ((cos10^(@)+sin20^(...

What is the value of `((cos10^(@)+sin20^(@)))/((cos20^(@)-sin10^(@)))`?

A

`(1)/sqrt(3)`

B

`-(1)/(sqrt(3))`

C

`sqrt(3)`

D

`-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\cos 10^\circ + \sin 20^\circ}{\cos 20^\circ - \sin 10^\circ}\), we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions We can use the identity \(\cos(90^\circ - \theta) = \sin(\theta)\) to rewrite some of the terms: - \(\cos 10^\circ = \sin(90^\circ - 10^\circ) = \sin 80^\circ\) - \(\cos 20^\circ = \sin(90^\circ - 20^\circ) = \sin 70^\circ\) Thus, we can rewrite the expression as: \[ \frac{\sin 80^\circ + \sin 20^\circ}{\sin 70^\circ - \sin 10^\circ} \] ### Step 2: Use the Sum and Difference Formulas Next, we can apply the sum-to-product identities: - For the numerator: \(\sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) - For the denominator: \(\sin a - \sin b = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right)\) Applying these identities: - Numerator: \[ \sin 80^\circ + \sin 20^\circ = 2 \sin\left(\frac{80^\circ + 20^\circ}{2}\right) \cos\left(\frac{80^\circ - 20^\circ}{2}\right) = 2 \sin(50^\circ) \cos(30^\circ) \] - Denominator: \[ \sin 70^\circ - \sin 10^\circ = 2 \cos\left(\frac{70^\circ + 10^\circ}{2}\right) \sin\left(\frac{70^\circ - 10^\circ}{2}\right) = 2 \cos(40^\circ) \sin(30^\circ) \] ### Step 3: Substitute Back into the Expression Now substituting back into our expression: \[ \frac{2 \sin(50^\circ) \cos(30^\circ)}{2 \cos(40^\circ) \sin(30^\circ)} \] ### Step 4: Simplify the Expression The \(2\) cancels out: \[ \frac{\sin(50^\circ) \cos(30^\circ)}{\cos(40^\circ) \sin(30^\circ)} \] ### Step 5: Substitute Known Values We know: - \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\) - \(\sin(30^\circ) = \frac{1}{2}\) Substituting these values: \[ \frac{\sin(50^\circ) \cdot \frac{\sqrt{3}}{2}}{\cos(40^\circ) \cdot \frac{1}{2}} = \frac{\sin(50^\circ) \cdot \sqrt{3}}{\cos(40^\circ)} \] ### Step 6: Use the Co-Function Identity Since \(\sin(50^\circ) = \cos(40^\circ)\), we can simplify further: \[ \frac{\cos(40^\circ) \cdot \sqrt{3}}{\cos(40^\circ)} = \sqrt{3} \] ### Final Answer Thus, the value of the expression is: \[ \sqrt{3} \]

To solve the expression \(\frac{\cos 10^\circ + \sin 20^\circ}{\cos 20^\circ - \sin 10^\circ}\), we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions We can use the identity \(\cos(90^\circ - \theta) = \sin(\theta)\) to rewrite some of the terms: - \(\cos 10^\circ = \sin(90^\circ - 10^\circ) = \sin 80^\circ\) - \(\cos 20^\circ = \sin(90^\circ - 20^\circ) = \sin 70^\circ\) Thus, we can rewrite the expression as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

The value of cos10^(@)-sin10^(@) is

The value of cos10^(@)-sin10^(@) is

Knowledge Check

  • What is the value of (cos10^(@)-sin10^(@))/(cos10^(@)+sin10^(@)) ?

    A
    `tan35^(@)`
    B
    `tan10^(@)`
    C
    `(1)/(sqrt(2))`
    D
    1
  • What is the value of ((cos40^(@)-cos140^(@)))/((sin80^(@)+sin20^(@))) ?

    A
    `2sqrt(3)`
    B
    `(2)/(sqrt(3))`
    C
    `(1)/(sqrt(3))`
    D
    `sqrt(3)`
  • The value of cos10^(@)-sin 10^(@) is

    A
    positive
    B
    negative
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    cos110^(@)+sin20=

    (cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan25^(@)

    The value of cos10^(@) - sin 10^(@) is

    What is the vlaue of (cos40^(@) - cos140^(@))//(sin80^(@)+sin20^(@))

    The value of cos 10^(@)- sin 10^(@) is