Home
Class 12
MATHS
What is the value of cos(pi//9)+cos(pi...

What is the value of `cos(pi//9)+cos(pi//3)+cos(5pi//9)+cos(7pi//9)`?

A

1

B

`-1`

C

`-1//2`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \), we can follow these steps: ### Step 1: Substitute the known value We know that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). So, we can rewrite the expression as: \[ \cos\left(\frac{\pi}{9}\right) + \frac{1}{2} + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \] ### Step 2: Group the cosines Now, we can group \( \cos\left(\frac{\pi}{9}\right) \) with \( \cos\left(\frac{5\pi}{9}\right) \) and \( \cos\left(\frac{7\pi}{9}\right) \): \[ \frac{1}{2} + \left( \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \right) \] ### Step 3: Apply the cosine addition formula Using the formula \( \cos c + \cos d = 2 \cos\left(\frac{c+d}{2}\right) \cos\left(\frac{c-d}{2}\right) \), we can combine \( \cos\left(\frac{\pi}{9}\right) \) and \( \cos\left(\frac{7\pi}{9}\right) \): \[ \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) = 2 \cos\left(\frac{\frac{\pi}{9} + \frac{7\pi}{9}}{2}\right) \cos\left(\frac{\frac{\pi}{9} - \frac{7\pi}{9}}{2}\right) \] Calculating the averages: \[ \frac{\frac{\pi}{9} + \frac{7\pi}{9}}{2} = \frac{4\pi}{9} \quad \text{and} \quad \frac{\frac{\pi}{9} - \frac{7\pi}{9}}{2} = -\frac{3\pi}{9} = -\frac{\pi}{3} \] Thus, \[ \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) = 2 \cos\left(\frac{4\pi}{9}\right) \cos\left(-\frac{\pi}{3}\right) \] Since \( \cos(-\theta) = \cos(\theta) \), we have: \[ \cos\left(-\frac{\pi}{3}\right) = \frac{1}{2} \] So, \[ \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) = 2 \cos\left(\frac{4\pi}{9}\right) \cdot \frac{1}{2} = \cos\left(\frac{4\pi}{9}\right) \] ### Step 4: Combine with the remaining cosine Now we can substitute this back into our expression: \[ \frac{1}{2} + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{5\pi}{9}\right) \] Next, we can combine \( \cos\left(\frac{4\pi}{9}\right) \) and \( \cos\left(\frac{5\pi}{9}\right) \): \[ \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{5\pi}{9}\right) = 2 \cos\left(\frac{\frac{4\pi}{9} + \frac{5\pi}{9}}{2}\right) \cos\left(\frac{\frac{4\pi}{9} - \frac{5\pi}{9}}{2}\right) \] Calculating the averages: \[ \frac{\frac{4\pi}{9} + \frac{5\pi}{9}}{2} = \frac{9\pi}{18} = \frac{\pi}{2} \quad \text{and} \quad \frac{\frac{4\pi}{9} - \frac{5\pi}{9}}{2} = -\frac{\pi}{18} \] Thus, \[ \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{5\pi}{9}\right) = 2 \cos\left(\frac{\pi}{2}\right) \cos\left(-\frac{\pi}{18}\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \), we find: \[ \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{5\pi}{9}\right) = 0 \] ### Step 5: Final result Thus, we have: \[ \frac{1}{2} + 0 = \frac{1}{2} \] ### Final Answer The value of \( \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \) is \( \frac{1}{2} \).

To find the value of \( \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \), we can follow these steps: ### Step 1: Substitute the known value We know that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). So, we can rewrite the expression as: \[ \cos\left(\frac{\pi}{9}\right) + \frac{1}{2} + \cos\left(\frac{5\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

Solve cos(pi/9)+cos(pi/3)+cos((5pi)/(9))+cos((7pi)/(9)) ?

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

the value of (cos pi)/(7)cos(2(pi)/(7))cos(3(pi)/(7)) is

Find the value of cos(2 pi)/(7)+cos(4 pi)/(7)+cos(6 pi)/(7)

The value of sin^(-1)((cos(pi/9))

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is

NDA PREVIOUS YEARS-TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS-MCQ
  1. If cottheta=2 costheta , where (pi//2)ltthetaltpi , then what is the v...

    Text Solution

    |

  2. If cottheta=5//12andtheta lies in the third quadrant , then what is (2...

    Text Solution

    |

  3. What is the value of cos(pi//9)+cos(pi//3)+cos(5pi//9)+cos(7pi//9)?

    Text Solution

    |

  4. sqrt(3)cossec2 0^@-sec2 0^@

    Text Solution

    |

  5. Match List I with II and select the correct answer using the code gi...

    Text Solution

    |

  6. If tanA=(1)/(2)andtanB=(1)/(3), then what is the value of (A + B) ?

    Text Solution

    |

  7. If cosxne-1, then what is (sinx)/(1+cosx) equal to ?

    Text Solution

    |

  8. What is the value of (1+tan15^(@))/(1-tan15^(@))?

    Text Solution

    |

  9. sqrt(3)cossec2 0^0-sec2 0^0

    Text Solution

    |

  10. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  11. What is the value of (cos15^(@)+cos45^(@))/(cos^(3)15^(@)+cos^(3)45^(...

    Text Solution

    |

  12. What angle A lies in the third quadrant and it satisfies the equation...

    Text Solution

    |

  13. What is (sintheta+1)/(costheta) equal to ?

    Text Solution

    |

  14. One of the angles of a triangle is 1//2 radian and the other is 99^(@...

    Text Solution

    |

  15. What is ((sec18^(@))/(sec144^(@))+("cosec"18^(@))/("cosec"144^(@))) e...

    Text Solution

    |

  16. If alphaand beta are positive angles such that alpha=beta=(pi)/(4),t...

    Text Solution

    |

  17. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  18. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  19. If =sec^(2)theta+cos^(2)theta, where 0ltthetalt(pi)/(2), then whic...

    Text Solution

    |

  20. If tanA=3//4andtanB=-12//5, then how many values can cot (A -B) have...

    Text Solution

    |