Home
Class 12
MATHS
What is (cos7x-cos3x)/(sin7x-2sin5x+sin...

What is `(cos7x-cos3x)/(sin7x-2sin5x+sin3x)`equal to ?

A

tan x

B

cot x

C

tan 2x

D

cot 2x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos 7x - \cos 3x) / (\sin 7x - 2\sin 5x + \sin 3x)\), we will use trigonometric identities to simplify it step by step. ### Step 1: Apply the Cosine Difference Identity We start with the numerator \(\cos 7x - \cos 3x\). We can use the cosine difference identity: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Here, \(A = 7x\) and \(B = 3x\). Thus: \[ \cos 7x - \cos 3x = -2 \sin\left(\frac{7x + 3x}{2}\right) \sin\left(\frac{7x - 3x}{2}\right) = -2 \sin(5x) \sin(2x) \] ### Step 2: Simplify the Denominator Now, we simplify the denominator \(\sin 7x - 2\sin 5x + \sin 3x\). We can group \(\sin 7x\) and \(\sin 3x\): \[ \sin 7x + \sin 3x = 2 \sin\left(\frac{7x + 3x}{2}\right) \cos\left(\frac{7x - 3x}{2}\right) = 2 \sin(5x) \cos(2x) \] Thus, the denominator becomes: \[ \sin 7x - 2\sin 5x + \sin 3x = 2 \sin(5x) \cos(2x) - 2\sin(5x) = 2\sin(5x)(\cos(2x) - 1) \] ### Step 3: Substitute Back into the Expression Now we can substitute our results back into the original expression: \[ \frac{\cos 7x - \cos 3x}{\sin 7x - 2\sin 5x + \sin 3x} = \frac{-2 \sin(5x) \sin(2x)}{2\sin(5x)(\cos(2x) - 1)} \] ### Step 4: Cancel Common Terms We can cancel \(2\sin(5x)\) from the numerator and denominator (assuming \(\sin(5x) \neq 0\)): \[ = \frac{-\sin(2x)}{\cos(2x) - 1} \] ### Step 5: Simplify Further Using the identity \(1 - \cos(2x) = 2\sin^2(x)\), we can rewrite the denominator: \[ = \frac{-\sin(2x)}{-2\sin^2(x)} = \frac{\sin(2x)}{2\sin^2(x)} \] ### Step 6: Final Simplification Using the double angle formula \(\sin(2x) = 2\sin(x)\cos(x)\), we can simplify further: \[ = \frac{2\sin(x)\cos(x)}{2\sin^2(x)} = \frac{\cos(x)}{\sin(x)} = \cot(x) \] ### Final Answer Thus, the expression \(\frac{\cos 7x - \cos 3x}{\sin 7x - 2\sin 5x + \sin 3x}\) simplifies to: \[ \cot(x) \]

To solve the expression \((\cos 7x - \cos 3x) / (\sin 7x - 2\sin 5x + \sin 3x)\), we will use trigonometric identities to simplify it step by step. ### Step 1: Apply the Cosine Difference Identity We start with the numerator \(\cos 7x - \cos 3x\). We can use the cosine difference identity: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Here, \(A = 7x\) and \(B = 3x\). Thus: ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

cos3x-cos2x=sin3x

Prove that (cos7x+cos5x)/(sin7x-sin5x)=cot x

Prove that :(cos7x+cos5x)/(sin7x-sin5x)=cot x

sin7x.cos 3x

dim_(x->0)(cos x-cos3x)/(x(sin3x-sin x))

(cos9x-cos5x)/(sin17x-sin3x)=-(sin2x)/(cos10x)

lim_(x rarr0)(cos x-cos3x)/(x(sin3x-sin x))

Solve the eqution (cos7x+cos5x)/(sin7x-sin 5x).

Prove that: ,(cos9x-cos5x)/(sin17x-sin3x)=-(sin2x)/(cos10x)

Prove that :(cos9x-cos5x)/(sin17x-sin3x)=(-sin2x)/(cos10x)

NDA PREVIOUS YEARS-TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS-MCQ
  1. If cot A = 2 and cot B = 2 , then what is the value of A +B ?

    Text Solution

    |

  2. What is sin^(2)66(1^(@))/(2)-sin^(2)23(1^(@))/(2) equal to ?

    Text Solution

    |

  3. What is (cos7x-cos3x)/(sin7x-2sin5x+sin3x)equal to ?

    Text Solution

    |

  4. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , then show that (tanx)/(tany)=(...

    Text Solution

    |

  5. If sin A sin (60^(@)-A)sin(60^(@)+A)=ksin3A, then what is k equal to ?

    Text Solution

    |

  6. The line y=sqrt(3) meets the graph y=tanx , where x in(0, (pi)...

    Text Solution

    |

  7. Which one of the following is one of the solutions of the equation of ...

    Text Solution

    |

  8. Given that 16sin^(5)x=p sin5x+qsin3x+rsinx. What is the value...

    Text Solution

    |

  9. Given that 16sin^(5)x=p sin5x+qsin3x+rsinx. What is the value of ...

    Text Solution

    |

  10. Given that 16sin^(5)x=p sin5x+qsin3x+rsinx. What is the value ...

    Text Solution

    |

  11. Let theta be a positive angle. If the number of degrees in theta is di...

    Text Solution

    |

  12. If alpha is a root of 25cos^2theta+5costheta-12=0,pi/2ltalphaltpi the ...

    Text Solution

    |

  13. If alpha is a root of 25cos^2theta+5costheta-12=0,pi/2ltalphaltpi the ...

    Text Solution

    |

  14. (1-sinA+cosA)^(2) is equal to ?

    Text Solution

    |

  15. What is (costheta)/(1-tantheta)+(sin theta)/(1-cottheta) equal to ?

    Text Solution

    |

  16. sin^(2)5^@+sin^(2)10^@+sin^(2)15^@ +.......+sin^(2)85^@ + sin^(2)90^@=

    Text Solution

    |

  17. Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

    Text Solution

    |

  18. If sin x + sin y = a and cos x + cos y=b, then tan^2\ (x+y)/2 + tan^2\...

    Text Solution

    |

  19. Consider a triangle ABC satisfying 2asin^(2)((C)/(2))+2csin^(2)((...

    Text Solution

    |

  20. Consider a triangle ABC satisfying 2asin^(2)((C)/(2))+2csin^(2)((...

    Text Solution

    |