Home
Class 12
MATHS
What is / are the solutions of the trigo...

What is / are the solutions of the trigonometric equation `"cosec "x+cotx=sqrt(3),"where "0ltxlt2pi`?

A

`(5pi)/(3)` only

B

`(pi)/(3)` only

C

`pi` only

D

`pi,(pi)/(3),(5pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the trigonometric equation \( \csc x + \cot x = \sqrt{3} \) for \( 0 < x < 2\pi \), we can follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine The cosecant and cotangent functions can be expressed in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] Substituting these into the equation gives: \[ \frac{1}{\sin x} + \frac{\cos x}{\sin x} = \sqrt{3} \] Combining the fractions, we have: \[ \frac{1 + \cos x}{\sin x} = \sqrt{3} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying yields: \[ 1 + \cos x = \sqrt{3} \sin x \] ### Step 3: Use the identity for \( \sin x \) We can express \( \sin x \) in terms of \( \cos x \): \[ \sin x = \sqrt{1 - \cos^2 x} \] Substituting this into the equation gives: \[ 1 + \cos x = \sqrt{3} \sqrt{1 - \cos^2 x} \] ### Step 4: Square both sides to eliminate the square root Squaring both sides results in: \[ (1 + \cos x)^2 = 3(1 - \cos^2 x) \] Expanding both sides: \[ 1 + 2\cos x + \cos^2 x = 3 - 3\cos^2 x \] Rearranging gives: \[ 4\cos^2 x + 2\cos x - 2 = 0 \] ### Step 5: Simplify the quadratic equation Dividing the entire equation by 2: \[ 2\cos^2 x + \cos x - 1 = 0 \] ### Step 6: Solve the quadratic equation using the quadratic formula Using the quadratic formula \( \cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = 1, c = -1 \): \[ \cos x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ \cos x = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] Calculating the two possible values: 1. \( \cos x = \frac{2}{4} = \frac{1}{2} \) 2. \( \cos x = \frac{-4}{4} = -1 \) ### Step 7: Find the angles corresponding to \( \cos x \) 1. For \( \cos x = \frac{1}{2} \): - \( x = \frac{\pi}{3} \) (in the first quadrant) - \( x = \frac{5\pi}{3} \) (in the fourth quadrant) 2. For \( \cos x = -1 \): - \( x = \pi \) ### Step 8: List all solutions in the given interval The solutions in the interval \( 0 < x < 2\pi \) are: - \( x = \frac{\pi}{3} \) - \( x = \pi \) - \( x = \frac{5\pi}{3} \) ### Step 9: Verify the solutions We need to check if these values satisfy the original equation: - For \( x = \frac{\pi}{3} \): \[ \csc\left(\frac{\pi}{3}\right) + \cot\left(\frac{\pi}{3}\right) = 2 + \frac{1}{\sqrt{3}} \quad \text{(valid)} \] - For \( x = \pi \): \[ \csc(\pi) + \cot(\pi) \quad \text{(undefined, not valid)} \] - For \( x = \frac{5\pi}{3} \): \[ \csc\left(\frac{5\pi}{3}\right) + \cot\left(\frac{5\pi}{3}\right) = -2 + \frac{1}{\sqrt{3}} \quad \text{(valid)} \] ### Final Answer The valid solutions for the equation \( \csc x + \cot x = \sqrt{3} \) in the interval \( 0 < x < 2\pi \) are: - \( x = \frac{\pi}{3} \) and \( x = \frac{5\pi}{3} \).
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

What is/are the solutions of the trigonometric equation cosec x + cotx = sqrt3 . where 0 lt x lt 2x ?

Find the pricnipal solution of the trigonometric equation: tan x=sqrt(3)

Find the pricnipal solution of the trigonometric equation: tan x=-sqrt(3)

Find the general solution of the trigonometric equation : sin 3x = 0

Find the pricnipal solution of the trigonometric equation: sec x=-(2)/(sqrt(3))

Find the pricnipal solution of the trigonometric equation: cot x=(1)/(sqrt(3))

Find the pricnipal solution of the trigonometric equation: sin x=(sqrt(3))/(2)

Find the general solution of the trigonometric equation :cos theta=-(sqrt(3))/(2)

Find the general solution of the trigonometric equation :cos^(3)4x=0

Find the pricnipal solution of the trigonometric equation: sin x=-(sqrt(3))/(2)

NDA PREVIOUS YEARS-TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS-MCQ
  1. If sec(theta-alpha),sec(theta+alpha) are in AP , where cos alphane1, ...

    Text Solution

    |

  2. A is an angle in the fourth quadrant. It satisfies the trigonometric e...

    Text Solution

    |

  3. What is / are the solutions of the trigonometric equation "cosec "x+c...

    Text Solution

    |

  4. If theta=pi/8, then what is value of (2costheta+1)^(10)(2cos2theta-1)^...

    Text Solution

    |

  5. If cosalpha and cosbeta are the roots of 4x^(2)-3=0, then what is the...

    Text Solution

    |

  6. If A = sin^2 theta+ cos^4 theta, then for all real values of theta

    Text Solution

    |

  7. What is the least value of 25 "cosec"^(2)x+36sec^(2)x?

    Text Solution

    |

  8. What is the value of (sin34^(@)cos236^(@)-sin56^(@)sin124^(@))/...

    Text Solution

    |

  9. tan54^(@) can be expressed as

    Text Solution

    |

  10. If =Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2)...

    Text Solution

    |

  11. If =Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2)...

    Text Solution

    |

  12. If p=Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2...

    Text Solution

    |

  13. It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is...

    Text Solution

    |

  14. It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is...

    Text Solution

    |

  15. If sinalpha+cosalpha=p, then what is cos^(2)(2alpha) equal to ?

    Text Solution

    |

  16. If tantheta=(1)/(2) and tanphi=(1)/(3), then the value of theta+phi i...

    Text Solution

    |

  17. If cosA=(3)/(4), then what is the value of sin((A)/(2))sin((3A)/(2)...

    Text Solution

    |

  18. tan7 5^0+cot7 5^(@)=

    Text Solution

    |

  19. What is the value of cos46^(@)cos47^(@)cos48^(@)cos49^(@)cos50^(@)...c...

    Text Solution

    |

  20. If sin2theta=cos3theta, "where"0ltthetalt(pi)/(2), then what is sin th...

    Text Solution

    |