Home
Class 12
MATHS
It is given that cos(theta-alpha)=a, c...

It is given that `cos(theta-alpha)=a, cos(theta-beta)=b`
What is `sin^(2)(alpha-beta)+2abcos(alpha-beta)` equal to ?

A

`a^(2)+b^(2)`

B

`a^(2)-b^(2)`

C

`b^(2)-a^(2)`

D

`-(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) given that \( \cos(\theta - \alpha) = a \) and \( \cos(\theta - \beta) = b \). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \] 2. **Use the identity for \( \sin^2(\alpha - \beta) \):** \[ \sin^2(\alpha - \beta) = 1 - \cos^2(\alpha - \beta) \] Therefore, we can rewrite \( x \): \[ x = 1 - \cos^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \] 3. **Let \( \cos(\alpha - \beta) = c \):** Now substituting \( c \) into the expression: \[ x = 1 - c^2 + 2abc \] 4. **Rearranging the expression:** \[ x = 1 + 2abc - c^2 \] 5. **Use the cosine subtraction formula:** We know: \[ \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \] From the given conditions, we have: \[ \cos(\alpha) = a \quad \text{and} \quad \cos(\beta) = b \] Thus, we can express \( \sin(\alpha) \) and \( \sin(\beta) \): \[ \sin(\alpha) = \sqrt{1 - a^2} \quad \text{and} \quad \sin(\beta) = \sqrt{1 - b^2} \] 6. **Substituting back:** Now substituting back into the cosine subtraction formula: \[ c = ab + \sqrt{1 - a^2}\sqrt{1 - b^2} \] 7. **Substituting \( c \) into the expression for \( x \):** \[ x = 1 + 2ab(ab + \sqrt{1 - a^2}\sqrt{1 - b^2}) - (ab + \sqrt{1 - a^2}\sqrt{1 - b^2})^2 \] 8. **Simplifying the expression:** This will lead us to: \[ x = 1 - (1 - a^2)(1 - b^2) + a^2 + b^2 \] 9. **Final simplification:** After simplifying, we find: \[ x = a^2 + b^2 \] ### Conclusion: Thus, the required value is: \[ \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) = a^2 + b^2 \]

To solve the problem, we need to find the value of the expression \( \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \) given that \( \cos(\theta - \alpha) = a \) and \( \cos(\theta - \beta) = b \). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = \sin^2(\alpha - \beta) + 2ab \cos(\alpha - \beta) \] ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is cos(alpha-beta) equal to ?

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

Consider the following for next three) items: It given that cos(theta-alpha ) = a, cos(theta-beta) = b . What is cos (alpha-beta) equal to ?

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)

If cos(theta-alpha)=p and sin(theta+beta)=q show that p^(2)+q^(2)-2pq sin(alpha+beta)=cos^(2)(alpha+beta)

NDA PREVIOUS YEARS-TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS-MCQ
  1. If cosalpha and cosbeta are the roots of 4x^(2)-3=0, then what is the...

    Text Solution

    |

  2. If A = sin^2 theta+ cos^4 theta, then for all real values of theta

    Text Solution

    |

  3. What is the least value of 25 "cosec"^(2)x+36sec^(2)x?

    Text Solution

    |

  4. What is the value of (sin34^(@)cos236^(@)-sin56^(@)sin124^(@))/...

    Text Solution

    |

  5. tan54^(@) can be expressed as

    Text Solution

    |

  6. If =Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2)...

    Text Solution

    |

  7. If =Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2)...

    Text Solution

    |

  8. If p=Xcostheta-Ysintheta,q=Xsintheta+Ycosthetaandp^(2)+4pq+q^(2)=AX^(2...

    Text Solution

    |

  9. It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is...

    Text Solution

    |

  10. It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is...

    Text Solution

    |

  11. If sinalpha+cosalpha=p, then what is cos^(2)(2alpha) equal to ?

    Text Solution

    |

  12. If tantheta=(1)/(2) and tanphi=(1)/(3), then the value of theta+phi i...

    Text Solution

    |

  13. If cosA=(3)/(4), then what is the value of sin((A)/(2))sin((3A)/(2)...

    Text Solution

    |

  14. tan7 5^0+cot7 5^(@)=

    Text Solution

    |

  15. What is the value of cos46^(@)cos47^(@)cos48^(@)cos49^(@)cos50^(@)...c...

    Text Solution

    |

  16. If sin2theta=cos3theta, "where"0ltthetalt(pi)/(2), then what is sin th...

    Text Solution

    |

  17. What is (1+tanalphatanbeta)^(2)+(tanalpha-tanbeta)^(2)-sec^(2)alphasec...

    Text Solution

    |

  18. If p="cosec " theta-cottheta and q = ("cosec "theta+cot theta)^(-1), ...

    Text Solution

    |

  19. If sin theta+costheta=sqrt(2)costheta then what is (costheta-sintheta)...

    Text Solution

    |

  20. If sintheta=-(1)/(2)andtantheta=(1)/(sqrt(3)), then in which quadran...

    Text Solution

    |