Home
Class 12
MATHS
The value of int(0)^(1) sqrt((1-x)/(1+x)...

The value of `int_(0)^(1) sqrt((1-x)/(1+x))dx` is

A

`(pi)/(2)+1`

B

`(pi)/(2)-1`

C

-1

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} \, dx \), we will follow these steps: ### Step 1: Substitution We will use the substitution \( x = \cos(2\theta) \). Then, we need to find \( dx \): \[ dx = -2\sin(2\theta) \, d\theta \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ \cos(2\theta) = 0 \implies 2\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{4} \] When \( x = 1 \): \[ \cos(2\theta) = 1 \implies 2\theta = 0 \implies \theta = 0 \] Thus, the limits change from \( x = 0 \) to \( x = 1 \) into \( \theta = \frac{\pi}{4} \) to \( \theta = 0 \). ### Step 3: Rewrite the integral Now, substituting \( x \) and \( dx \) into the integral: \[ I = \int_{\frac{\pi}{4}}^{0} \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} \cdot (-2\sin(2\theta)) \, d\theta \] Reversing the limits gives: \[ I = 2 \int_{0}^{\frac{\pi}{4}} \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} \sin(2\theta) \, d\theta \] ### Step 4: Simplify the integrand Using the trigonometric identities: \[ 1 - \cos(2\theta) = 2\sin^2(\theta) \quad \text{and} \quad 1 + \cos(2\theta) = 2\cos^2(\theta) \] Thus, \[ \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} = \sqrt{\frac{2\sin^2(\theta)}{2\cos^2(\theta)}} = \tan(\theta) \] ### Step 5: Substitute back into the integral Now substituting this back into the integral: \[ I = 2 \int_{0}^{\frac{\pi}{4}} \tan(\theta) \sin(2\theta) \, d\theta \] Since \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \): \[ I = 4 \int_{0}^{\frac{\pi}{4}} \sin^2(\theta) \cos(\theta) \, d\theta \] ### Step 6: Use the identity for sine Using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ I = 4 \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos(2\theta)}{2} \cos(\theta) \, d\theta = 2 \int_{0}^{\frac{\pi}{4}} (1 - \cos(2\theta)) \cos(\theta) \, d\theta \] ### Step 7: Evaluate the integral Now we can split the integral: \[ I = 2 \left( \int_{0}^{\frac{\pi}{4}} \cos(\theta) \, d\theta - \int_{0}^{\frac{\pi}{4}} \cos(2\theta) \cos(\theta) \, d\theta \right) \] The first integral: \[ \int_{0}^{\frac{\pi}{4}} \cos(\theta) \, d\theta = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] The second integral can be solved using the product-to-sum identities: \[ \int_{0}^{\frac{\pi}{4}} \cos(2\theta) \cos(\theta) \, d\theta = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} \cos(\theta) + \int_{0}^{\frac{\pi}{4}} \cos(3\theta) \right) \] Calculating these gives: \[ \frac{1}{2} \left( \frac{\sqrt{2}}{2} + 0 \right) = \frac{\sqrt{2}}{4} \] ### Step 8: Combine results Now substituting back into our expression for \( I \): \[ I = 2 \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4} \right) = 2 \cdot \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{2} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4} - \frac{1}{2}} \]

To solve the integral \( I = \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} \, dx \), we will follow these steps: ### Step 1: Substitution We will use the substitution \( x = \cos(2\theta) \). Then, we need to find \( dx \): \[ dx = -2\sin(2\theta) \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x sqrt(1-x)dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

int_(0)^(1)(sqrt(x))/(1+x^(2))dx

int_(0)^(1)sqrt(x)dx=

The value of integral int_(0)^(1)sqrt((1-x)/(1+x)) dx is

int_(0)^(1)sqrt((x)/(1-x^(3))) dx=

int_(0)^(1)x sqrt(1-x^(2))dx

int_(0)^(1)x+sqrt(x)dx=

The value of int_(0)^(4) 3^(sqrt(2x+1) )dx is

int_(0)^(1)sqrt((1-x)/(1+x))backslash dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(1) sqrt((1-x)/(1+x))dx is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |