Home
Class 12
MATHS
int(pi//4)^(3pi//4)(1)/(1+cosx)dx=...

`int_(pi//4)^(3pi//4)(1)/(1+cosx)dx=`

A

`2`

B

`6`

C

`5`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \cos x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integrand We can use the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\). Thus, we can rewrite the integrand: \[ \frac{1}{1 + \cos x} = \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{1}{2} \sec^2\left(\frac{x}{2}\right). \] ### Step 2: Change the variable Let \(u = \frac{x}{2}\). Then, \(dx = 2 \, du\). The limits change as follows: - When \(x = \frac{\pi}{4}\), \(u = \frac{\pi}{8}\). - When \(x = \frac{3\pi}{4}\), \(u = \frac{3\pi}{8}\). Now, the integral becomes: \[ I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sec^2(u) \, du. \] ### Step 3: Integrate The integral of \(\sec^2(u)\) is \(\tan(u)\). Thus, we have: \[ I = \left[ \tan(u) \right]_{\frac{\pi}{8}}^{\frac{3\pi}{8}}. \] ### Step 4: Evaluate the limits Now we will evaluate the limits: \[ I = \tan\left(\frac{3\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right). \] ### Step 5: Use the tangent addition formula Using the tangent addition formula, we can express \(\tan\left(\frac{3\pi}{8}\right)\) and \(\tan\left(\frac{\pi}{8}\right)\): \[ \tan\left(\frac{3\pi}{8}\right) = \tan\left(\frac{\pi}{4} + \frac{\pi}{8}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{8}\right)} = \frac{1 + \tan\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)}. \] ### Step 6: Substitute and simplify Let \(t = \tan\left(\frac{\pi}{8}\right)\). Then: \[ I = \frac{1 + t}{1 - t} - t = \frac{1 + t - t(1 - t)}{1 - t} = \frac{1 + t - t + t^2}{1 - t} = \frac{1 + t^2}{1 - t}. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1 + \tan^2\left(\frac{\pi}{8}\right)}{1 - \tan\left(\frac{\pi}{8}\right)}. \]

To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \cos x} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

int_(pi//4)^(pi//2)(dx)/((1-cos2x))

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

Evaluate the following definite integral: int_(-pi/4)^( pi/4)(1)/(1+s in x)dx

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(pi//4)^(3pi//4)(1)/(1+cosx)dx=

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |