Home
Class 12
MATHS
If I(1)=int(e )^(e^(2)) (dx)/(logx)"and ...

If `I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx`,then

A

`I_(1)=I_(2)`

B

`2I_(1)=I_(2)`

C

`I_(1)=2I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two integrals \( I_1 \) and \( I_2 \) and compare them. ### Step-by-Step Solution 1. **Evaluate \( I_1 \)**: \[ I_1 = \int_{e}^{e^2} \frac{dx}{\log x} \] We can use the substitution \( t = \log x \). Then, we have: \[ dt = \frac{1}{x} dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] The limits change as follows: - When \( x = e \), \( t = \log e = 1 \) - When \( x = e^2 \), \( t = \log e^2 = 2 \) Thus, the integral becomes: \[ I_1 = \int_{1}^{2} \frac{e^t \, dt}{t} \] 2. **Evaluate \( I_2 \)**: \[ I_2 = \int_{1}^{2} \frac{e^x}{x} \, dx \] This integral is already in a suitable form for comparison. 3. **Compare \( I_1 \) and \( I_2 \)**: From the transformations we made, we see that: \[ I_1 = \int_{1}^{2} \frac{e^t}{t} \, dt = \int_{1}^{2} \frac{e^x}{x} \, dx = I_2 \] 4. **Conclusion**: Therefore, we conclude that: \[ I_1 = I_2 \] ### Final Answer: The correct option is: - Option 1: \( I_1 = I_2 \)

To solve the problem, we need to evaluate the two integrals \( I_1 \) and \( I_2 \) and compare them. ### Step-by-Step Solution 1. **Evaluate \( I_1 \)**: \[ I_1 = \int_{e}^{e^2} \frac{dx}{\log x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

int_(-1)^(2) e^(-x)dx

I=int_(0)^(1)e^(x^(2)-x)dx then

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

int_(0)^(1)(e^(x))/(1+e^(2x))dx

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If I(1)=int(e )^(e^(2)) (dx)/(logx)"and "I(2)=int(1)^(2)(e^(x))/(x)dx,...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |