Home
Class 12
MATHS
int(0)^(2pi)e^(x//2)sin((x)/(2)+(pi)/(4)...

`int_(0)^(2pi)e^(x//2)sin((x)/(2)+(pi)/(4))dx=`

A

`2pi`

B

`e^(pi)`

C

0

D

`2sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{2\pi} e^{\frac{x}{2}} \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \frac{x}{2} \). Then, \( x = 2t \) and \( dx = 2 dt \). The limits change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = 2\pi \), \( t = \pi \). Thus, the integral becomes: \[ \int_{0}^{\pi} e^{t} \sin\left(t + \frac{\pi}{4}\right) \cdot 2 dt = 2 \int_{0}^{\pi} e^{t} \sin\left(t + \frac{\pi}{4}\right) dt. \] ### Step 2: Expand the Sine Function Using the angle addition formula for sine, we have: \[ \sin\left(t + \frac{\pi}{4}\right) = \sin t \cos\left(\frac{\pi}{4}\right) + \cos t \sin\left(\frac{\pi}{4}\right). \] Since \( \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \), we can rewrite the sine function as: \[ \sin\left(t + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \sin t + \frac{1}{\sqrt{2}} \cos t. \] ### Step 3: Substitute Back into the Integral Substituting this back into the integral gives: \[ 2 \int_{0}^{\pi} e^{t} \left(\frac{1}{\sqrt{2}} \sin t + \frac{1}{\sqrt{2}} \cos t\right) dt = \frac{2}{\sqrt{2}} \int_{0}^{\pi} e^{t} \sin t dt + \frac{2}{\sqrt{2}} \int_{0}^{\pi} e^{t} \cos t dt. \] ### Step 4: Factor Out Constants Factoring out the constant \( \frac{2}{\sqrt{2}} \): \[ \frac{2}{\sqrt{2}} \left( \int_{0}^{\pi} e^{t} \sin t dt + \int_{0}^{\pi} e^{t} \cos t dt \right). \] ### Step 5: Evaluate the Integrals To evaluate the integrals \( \int e^{t} \sin t dt \) and \( \int e^{t} \cos t dt \), we can use integration by parts or the known result: \[ \int e^{t} \sin t dt = e^{t} \left(\sin t - \cos t\right) + C, \] \[ \int e^{t} \cos t dt = e^{t} \left(\cos t + \sin t\right) + C. \] ### Step 6: Apply Limits Evaluating these from \( 0 \) to \( \pi \): 1. For \( \int_{0}^{\pi} e^{t} \sin t dt \): - At \( t = \pi \): \( e^{\pi}(\sin \pi - \cos \pi) = e^{\pi}(0 + 1) = e^{\pi} \). - At \( t = 0 \): \( e^{0}(\sin 0 - \cos 0) = 1(0 - 1) = -1 \). - Thus, \( \int_{0}^{\pi} e^{t} \sin t dt = e^{\pi} + 1 \). 2. For \( \int_{0}^{\pi} e^{t} \cos t dt \): - At \( t = \pi \): \( e^{\pi}(\cos \pi + \sin \pi) = e^{\pi}(-1 + 0) = -e^{\pi} \). - At \( t = 0 \): \( e^{0}(\cos 0 + \sin 0) = 1(1 + 0) = 1 \). - Thus, \( \int_{0}^{\pi} e^{t} \cos t dt = -e^{\pi} + 1 \). ### Step 7: Combine Results Combining these results: \[ \int_{0}^{\pi} e^{t} \sin t dt + \int_{0}^{\pi} e^{t} \cos t dt = (e^{\pi} + 1) + (-e^{\pi} + 1) = 2. \] ### Final Calculation Now substituting back into our expression: \[ \frac{2}{\sqrt{2}} \cdot 2 = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \] Thus, the final answer is: \[ \int_{0}^{2\pi} e^{\frac{x}{2}} \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) dx = 2\sqrt{2}. \]

To solve the integral \[ \int_{0}^{2\pi} e^{\frac{x}{2}} \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integral: int_(0)^(2 pi)e^(x/2)sin((x)/(2)+(pi)/(4))dx

Evaluate :int_(0)^( pi)e^(2x)*sin((pi)/(4)+x)dx

Evaluate :int_(0)^(2 pi)e^(x)cos((pi)/(4)+(x)/(2))dx

int_(0)^(2pi)e^(x) (x/2+pi/4) dx =

int_(0)^(pi) e^(x) sin 2 x dx=

int_(0)^(pi//4)e^(x)sin x dx =

int_(0)^( pi/2)(sin x)*dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(2)(|sin x|)/([(x)/(pi)]+(1)/(2))dx

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(2pi)e^(x//2)sin((x)/(2)+(pi)/(4))dx=

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |