Home
Class 12
MATHS
int(0)^(2) |x^(2)+2x-3|dx is equal to...

`int_(0)^(2) |x^(2)+2x-3|dx` is equal to

A

4

B

6

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} |x^{2} + 2x - 3| \, dx \), we will follow these steps: ### Step 1: Factor the quadratic expression First, we need to factor the expression inside the absolute value: \[ x^{2} + 2x - 3 = (x + 3)(x - 1) \] This means the roots of the equation \( x^{2} + 2x - 3 = 0 \) are \( x = -3 \) and \( x = 1 \). ### Step 2: Determine the sign of the expression Next, we need to determine where the expression \( x^{2} + 2x - 3 \) is positive or negative. We can do this by testing intervals based on the roots: - For \( x < -3 \): Choose \( x = -4 \) → \( (-4 + 3)(-4 - 1) = (-1)(-5) > 0 \) - For \( -3 < x < 1 \): Choose \( x = 0 \) → \( (0 + 3)(0 - 1) = (3)(-1) < 0 \) - For \( x > 1 \): Choose \( x = 2 \) → \( (2 + 3)(2 - 1) = (5)(1) > 0 \) Thus, we have: - \( x^{2} + 2x - 3 > 0 \) for \( x < -3 \) and \( x > 1 \) - \( x^{2} + 2x - 3 < 0 \) for \( -3 < x < 1 \) ### Step 3: Break the integral into intervals Since we are integrating from \( 0 \) to \( 2 \), we note that the expression is negative between \( 0 \) and \( 1 \) and positive from \( 1 \) to \( 2 \). Therefore, we can break the integral as follows: \[ \int_{0}^{2} |x^{2} + 2x - 3| \, dx = \int_{0}^{1} -(x^{2} + 2x - 3) \, dx + \int_{1}^{2} (x^{2} + 2x - 3) \, dx \] ### Step 4: Evaluate the first integral Now we evaluate the first integral: \[ \int_{0}^{1} -(x^{2} + 2x - 3) \, dx = \int_{0}^{1} (-x^{2} - 2x + 3) \, dx \] Calculating this: \[ = \left[-\frac{x^{3}}{3} - x^{2} + 3x\right]_{0}^{1} = \left[-\frac{1}{3} - 1 + 3\right] - [0] = -\frac{1}{3} - 1 + 3 = -\frac{1}{3} - \frac{3}{3} + \frac{9}{3} = \frac{5}{3} \] ### Step 5: Evaluate the second integral Now we evaluate the second integral: \[ \int_{1}^{2} (x^{2} + 2x - 3) \, dx \] Calculating this: \[ = \left[\frac{x^{3}}{3} + x^{2} - 3x\right]_{1}^{2} = \left[\frac{8}{3} + 4 - 6\right] - \left[\frac{1}{3} + 1 - 3\right] \] Calculating the values: \[ = \left[\frac{8}{3} + 4 - 6\right] = \left[\frac{8}{3} - \frac{6}{3} + \frac{12}{3}\right] = \frac{14}{3} \] And for the lower limit: \[ = \left[\frac{1}{3} + 1 - 3\right] = \left[\frac{1}{3} + \frac{3}{3} - \frac{9}{3}\right] = -\frac{5}{3} \] Thus, the second integral becomes: \[ \frac{14}{3} - (-\frac{5}{3}) = \frac{14}{3} + \frac{5}{3} = \frac{19}{3} \] ### Step 6: Combine the results Now we combine the results of both integrals: \[ \int_{0}^{2} |x^{2} + 2x - 3| \, dx = \frac{5}{3} + \frac{19}{3} = \frac{24}{3} = 8 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} |x^{2} + 2x - 3| \, dx = 8 \]

To solve the integral \( \int_{0}^{2} |x^{2} + 2x - 3| \, dx \), we will follow these steps: ### Step 1: Factor the quadratic expression First, we need to factor the expression inside the absolute value: \[ x^{2} + 2x - 3 = (x + 3)(x - 1) \] This means the roots of the equation \( x^{2} + 2x - 3 = 0 \) are \( x = -3 \) and \( x = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_ (0) ^ (2) | 2x-3 | dx

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

int_(0)^(2)(3x^(2)+2x-1)dx=

int_(0)^(2)3x^(2)dx is

int_(0)^(2) [x^(2)]dx is equal to

int_(0)^(2)|sin x-cos x|dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(2) |x^(2)+2x-3|dx is equal to

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |