Home
Class 12
MATHS
int(0)^(4) {sqrt(x)} is equal to, where ...

`int_(0)^(4) {sqrt(x)}` is equal to, where {x} denotes the fraction part of x.

A

`(2)/(3)`

B

`(16)/(3)`

C

`(5)/(3)`

D

`(7)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} \{\sqrt{x}\} \, dx \), where \(\{x\}\) denotes the fractional part of \(x\), we can follow these steps: ### Step 1: Understand the fractional part function The fractional part of a number \(y\) is defined as: \[ \{y\} = y - \lfloor y \rfloor \] where \(\lfloor y \rfloor\) is the greatest integer less than or equal to \(y\). ### Step 2: Identify the limits of integration We need to evaluate the integral from \(0\) to \(4\). The function \(\sqrt{x}\) varies from \(0\) to \(2\) as \(x\) goes from \(0\) to \(4\). ### Step 3: Determine where \(\sqrt{x}\) crosses integer values The integer values of \(\sqrt{x}\) in the interval \(0\) to \(4\) are: - From \(0\) to \(1\) when \(x\) is in \([0, 1)\) - From \(1\) to \(2\) when \(x\) is in \([1, 4)\) ### Step 4: Break the integral into parts We can split the integral into two parts based on the intervals identified: \[ \int_{0}^{4} \{\sqrt{x}\} \, dx = \int_{0}^{1} \{\sqrt{x}\} \, dx + \int_{1}^{4} \{\sqrt{x}\} \, dx \] ### Step 5: Evaluate the first integral \(\int_{0}^{1} \{\sqrt{x}\} \, dx\) In the interval \([0, 1)\), \(\sqrt{x}\) varies from \(0\) to \(1\), thus: \[ \{\sqrt{x}\} = \sqrt{x} - 0 = \sqrt{x} \] So, \[ \int_{0}^{1} \{\sqrt{x}\} \, dx = \int_{0}^{1} \sqrt{x} \, dx \] Calculating this integral: \[ \int \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \Big|_{0}^{1} = \frac{2}{3}(1^{3/2} - 0^{3/2}) = \frac{2}{3} \] ### Step 6: Evaluate the second integral \(\int_{1}^{4} \{\sqrt{x}\} \, dx\) In the interval \([1, 4]\), \(\sqrt{x}\) varies from \(1\) to \(2\), thus: \[ \{\sqrt{x}\} = \sqrt{x} - 1 \] So, \[ \int_{1}^{4} \{\sqrt{x}\} \, dx = \int_{1}^{4} (\sqrt{x} - 1) \, dx \] This can be split into two integrals: \[ \int_{1}^{4} \sqrt{x} \, dx - \int_{1}^{4} 1 \, dx \] Calculating these integrals: 1. For \(\int_{1}^{4} \sqrt{x} \, dx\): \[ \int \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \Big|_{1}^{4} = \frac{2}{3}(4^{3/2} - 1^{3/2}) = \frac{2}{3}(8 - 1) = \frac{2}{3} \cdot 7 = \frac{14}{3} \] 2. For \(\int_{1}^{4} 1 \, dx\): \[ \int_{1}^{4} 1 \, dx = x \Big|_{1}^{4} = 4 - 1 = 3 \] Combining these results: \[ \int_{1}^{4} \{\sqrt{x}\} \, dx = \frac{14}{3} - 3 = \frac{14}{3} - \frac{9}{3} = \frac{5}{3} \] ### Step 7: Combine both parts Now, we can combine the results of both integrals: \[ \int_{0}^{4} \{\sqrt{x}\} \, dx = \int_{0}^{1} \{\sqrt{x}\} \, dx + \int_{1}^{4} \{\sqrt{x}\} \, dx = \frac{2}{3} + \frac{5}{3} = \frac{7}{3} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{4} \{\sqrt{x}\} \, dx \) is: \[ \boxed{\frac{7}{3}} \]

To solve the integral \( \int_{0}^{4} \{\sqrt{x}\} \, dx \), where \(\{x\}\) denotes the fractional part of \(x\), we can follow these steps: ### Step 1: Understand the fractional part function The fractional part of a number \(y\) is defined as: \[ \{y\} = y - \lfloor y \rfloor \] where \(\lfloor y \rfloor\) is the greatest integer less than or equal to \(y\). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

int_(0)^(9){sqrt(x)}dx, where {x} denotes the fractional part of x, is 5(b)6(c)4(d)3

int _(2)^(3){x} dx is equal to (where {.} denotes, fractional part of x)

{(99^(999)+1)/(100)} is equal to,{x} denotes the fractional part of x

The value of lim_(xrarr1)(xtan{x})/(x-1) is equal to (where {x} denotes the fractional part of x)

int_(-3)^(3)x^(8){x^(11)}dx is equal to (where {.} is the fractional part of x )

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Let x=(5sqrt(2)+7)^(19), then x{x} is equal to (Where {.} denotes fractional part of x)

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part ...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |