Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^(2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx`equals ,

A

`4sqrt(3)-4`

B

`4sqrt(3)-4-(pi)/(3)`

C

`pi-4`

D

`(2pi)/(3)-4-4sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \sqrt{1 + 4 \sin^2\left(\frac{x}{2}\right) - 4 \sin\left(\frac{x}{2}\right)} \, dx, \] we start by simplifying the expression under the square root. ### Step 1: Simplify the expression under the square root We can rewrite the expression \(1 + 4 \sin^2\left(\frac{x}{2}\right) - 4 \sin\left(\frac{x}{2}\right)\) as follows: \[ 1 + 4 \sin^2\left(\frac{x}{2}\right) - 4 \sin\left(\frac{x}{2}\right) = 1 - 4 \sin\left(\frac{x}{2}\right) + 4 \sin^2\left(\frac{x}{2}\right). \] This can be factored as: \[ 1 - 2 \sin\left(\frac{x}{2}\right)^2 = (1 - 2 \sin\left(\frac{x}{2}\right))^2. \] Thus, we have: \[ \sqrt{1 + 4 \sin^2\left(\frac{x}{2}\right) - 4 \sin\left(\frac{x}{2}\right)} = |1 - 2 \sin\left(\frac{x}{2}\right)|. \] ### Step 2: Determine the intervals for the absolute value Next, we need to find where \(1 - 2 \sin\left(\frac{x}{2}\right)\) is positive or negative. - \(1 - 2 \sin\left(\frac{x}{2}\right) \geq 0\) implies \(\sin\left(\frac{x}{2}\right) \leq \frac{1}{2}\). - This occurs when \(\frac{x}{2} \leq \frac{\pi}{6}\) or \(x \leq \frac{\pi}{3}\). Thus, we can break the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{3}} (1 - 2 \sin\left(\frac{x}{2}\right)) \, dx + \int_{\frac{\pi}{3}}^{\pi} (2 \sin\left(\frac{x}{2}\right) - 1) \, dx. \] ### Step 3: Evaluate the first integral Now we evaluate the first integral: \[ \int_{0}^{\frac{\pi}{3}} (1 - 2 \sin\left(\frac{x}{2}\right)) \, dx. \] This can be split into two parts: \[ \int_{0}^{\frac{\pi}{3}} 1 \, dx - 2 \int_{0}^{\frac{\pi}{3}} \sin\left(\frac{x}{2}\right) \, dx. \] Calculating the first part: \[ \int_{0}^{\frac{\pi}{3}} 1 \, dx = \left[x\right]_{0}^{\frac{\pi}{3}} = \frac{\pi}{3}. \] For the second part, we use the substitution \(u = \frac{x}{2}\), \(dx = 2 du\): \[ \int_{0}^{\frac{\pi}{3}} \sin\left(\frac{x}{2}\right) \, dx = 2 \int_{0}^{\frac{\pi}{6}} \sin(u) \, du = 2 \left[-\cos(u)\right]_{0}^{\frac{\pi}{6}} = 2 \left[-\cos\left(\frac{\pi}{6}\right) + 1\right] = 2 \left[-\frac{\sqrt{3}}{2} + 1\right] = 2 \left(1 - \frac{\sqrt{3}}{2}\right) = 2 - \sqrt{3}. \] Thus, the first integral evaluates to: \[ \frac{\pi}{3} - 2(2 - \sqrt{3}) = \frac{\pi}{3} - 4 + 2\sqrt{3}. \] ### Step 4: Evaluate the second integral Now we evaluate the second integral: \[ \int_{\frac{\pi}{3}}^{\pi} (2 \sin\left(\frac{x}{2}\right) - 1) \, dx. \] This can also be split: \[ 2 \int_{\frac{\pi}{3}}^{\pi} \sin\left(\frac{x}{2}\right) \, dx - \int_{\frac{\pi}{3}}^{\pi} 1 \, dx. \] Calculating the second part: \[ \int_{\frac{\pi}{3}}^{\pi} 1 \, dx = \left[x\right]_{\frac{\pi}{3}}^{\pi} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}. \] For the first part, using the same substitution \(u = \frac{x}{2}\): \[ 2 \int_{\frac{\pi}{3}}^{\pi} \sin\left(\frac{x}{2}\right) \, dx = 4 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin(u) \, du = 4 \left[-\cos(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = 4 \left[-0 + \frac{\sqrt{3}}{2}\right] = 2\sqrt{3}. \] Thus, the second integral evaluates to: \[ 2\sqrt{3} - \frac{2\pi}{3}. \] ### Step 5: Combine results Now we combine the results of both integrals: \[ I = \left(\frac{\pi}{3} - 4 + 2\sqrt{3}\right) + \left(2\sqrt{3} - \frac{2\pi}{3}\right). \] Combining like terms gives: \[ I = \left(\frac{\pi}{3} - \frac{2\pi}{3}\right) + (2\sqrt{3} + 2\sqrt{3}) - 4 = -\frac{\pi}{3} + 4\sqrt{3} - 4. \] ### Final Result Thus, the value of the integral is: \[ I = 4\sqrt{3} - \frac{\pi}{3} - 4. \]

To solve the integral \[ I = \int_{0}^{\pi} \sqrt{1 + 4 \sin^2\left(\frac{x}{2}\right) - 4 \sin\left(\frac{x}{2}\right)} \, dx, \] we start by simplifying the expression under the square root. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is equal to

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-2sin((x)/(2)))dx

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

int_(0)^( pi//2)sqrt((1-sin2x)/(1+sin2x))dx

int_(0)^(pi//4)sqrt((1-sin2x)/(1+sin 2x))dx=

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The integral int(0)^(pi)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dxequa...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |