Home
Class 12
MATHS
Let f:R to R be a function defined by f(...

Let `f:R to R` be a function defined by f(x) `{:{([x]",",xle 2),(0",",x gt 2):}`where [x] is the greatest integer less than or equal to x.If `I=int_(-1)^(2) (xf(x^(2)))/(2+f(x+1))dx`, then the value, is

A

`(1)/(4)`

B

`(1)/(2)`

C

8

D

`-(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, f(x)`{:{([x]",",xle 2),(0",",x gt 2):}`
`:.I=overset(2)underset(-1)int (xf(x^(2)))/(2+f(x+1))dx`
`rArr I=overset(0)underset(-1)int (x xx0)/(2xx0)dxoverset(1)underset(0)int (x xx0)/(2+1)dx+overset(sqrt(2))underset(1)int (x xx1)/(2+0)dxoverset(2)underset(sqrt(2))int (x xx0)/(2+f(x+1))dx`
`rArr I=(1)/(2)[(x^(2))/(2)]_(1)^(sqrt(2))=(1)/(2)(1-(1)/(2))=(1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)={[[x],x 2 where [x] is the greatest integer less than or equal to x. If I=int_(-1)^(2)(xf(x^(2)))/(2+f(x+1))dx, then the value of (4I-1) is

The function of f:R to R , defined by f(x)=[x] , where [x] denotes the greatest integer less than or equal to x, is

Let f(x)=maximum{x+|x|,x-[x]}, where [x] is the greatest integer less than or equal to int_(-2)^(2)f(x)dx=

Let f(x)=[x^(2)+1],([x] is the greatest integer less than or equal to x) . Ther

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1) , where (x] is the greatest integer less than or equal to x, then

Let f:(1,3)rarr R be a function defined by f(x)=(x[x])/(1+x^(2)) , where [x] denotes the greatest integer <=x .Then the range of f is

The value of int_(0)^(2)x^([x^(2)+1])(dx), where [x] is the greatest integer less than or equal to x is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. Let f:R to R be a function defined by f(x) {:{([x]",",xle 2),(0",",x g...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |