Home
Class 12
MATHS
The value of int(0)^(oo) (logx)/(1+x^(2...

The value of `int_(0)^(oo) (logx)/(1+x^(2))dx`, is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx, \] we can use a substitution and properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). This gives us: \[ dx = \sec^2 \theta \, d\theta. \] ### Step 2: Change of Limits When \( x = 0 \), \( \theta = 0 \). When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Thus, the limits change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 3: Rewrite the Integral Substituting \( x = \tan \theta \) into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\log(\tan \theta)}{1 + \tan^2 \theta} \sec^2 \theta \, d\theta. \] Since \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan \theta) \, d\theta. \] ### Step 4: Use Symmetry We can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] Let’s consider: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan \theta) \, d\theta. \] Now, we can change the variable in the integral: \[ J = \int_{0}^{\frac{\pi}{2}} \log(\cot \theta) \, d\theta. \] Using the identity \( \cot \theta = \frac{1}{\tan \theta} \): \[ J = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{\tan \theta}\right) \, d\theta = \int_{0}^{\frac{\pi}{2}} -\log(\tan \theta) \, d\theta = -I. \] ### Step 5: Combine Integrals Now, we can add \( I \) and \( J \): \[ I + J = \int_{0}^{\frac{\pi}{2}} \log(\tan \theta) \, d\theta + \int_{0}^{\frac{\pi}{2}} \log(\cot \theta) \, d\theta = \int_{0}^{\frac{\pi}{2}} \log(\tan \theta \cdot \cot \theta) \, d\theta. \] Since \( \tan \theta \cdot \cot \theta = 1 \): \[ I + J = \int_{0}^{\frac{\pi}{2}} \log(1) \, d\theta = 0. \] ### Step 6: Solve for \( I \) Since \( J = -I \), we have: \[ I - I = 0 \implies 2I = 0 \implies I = 0. \] ### Final Answer Thus, the value of the integral is \[ \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx = 0. \] ---

To solve the integral \[ I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx, \] we can use a substitution and properties of definite integrals. Here’s a step-by-step solution: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

Find the value of int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx .

The value of int_(0)^(oo) (dx)/(a^(2)+x^(2)) is equal to

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(oo) (logx)/(1+x^(2))dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |