Home
Class 12
MATHS
If I=int(0)^(pi//4) log(1+tan x)dx, then...

If `I=int_(0)^(pi//4) log(1+tan x)dx`, then I=

A

`(pi)/(8)log_(e )2`

B

`(pi)/(4)log_(e )2`

C

`-(pi)/(8)log_(e )2`

D

`-(pi)/(4) log_(e ) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \), we can use the property of definite integrals. Here are the steps to find the value of \( I \): ### Step 1: Use the property of definite integrals We know that for any function \( f(x) \), the following property holds: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let \( a = \frac{\pi}{4} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan\left(\frac{\pi}{4} - x\right)) \, dx \] ### Step 2: Simplify \( \tan\left(\frac{\pi}{4} - x\right) \) Using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{4} - x\right) = \frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4} \tan x} = \frac{1 - \tan x}{1 + \tan x} \] Thus, we can rewrite \( I \) as: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) \, dx \] ### Step 3: Simplify the logarithm Now simplify the expression inside the logarithm: \[ 1 + \frac{1 - \tan x}{1 + \tan x} = \frac{(1 + \tan x) + (1 - \tan x)}{1 + \tan x} = \frac{2}{1 + \tan x} \] So we have: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) \, dx \] ### Step 4: Split the logarithm Using the property of logarithms, we can split the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log(2) \, dx - \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \] This gives us: \[ I = \frac{\pi}{4} \log(2) - I \] ### Step 5: Solve for \( I \) Now, add \( I \) to both sides: \[ 2I = \frac{\pi}{4} \log(2) \] Thus, we find: \[ I = \frac{\pi}{8} \log(2) \] ### Final Answer: \[ I = \frac{\pi}{8} \log(2) \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \), we can use the property of definite integrals. Here are the steps to find the value of \( I \): ### Step 1: Use the property of definite integrals We know that for any function \( f(x) \), the following property holds: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let \( a = \frac{\pi}{4} \). Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^(pi//4) tan x dx

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

int_(0)^(pi) x log sinx\ dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If I=int(0)^(pi//4) log(1+tan x)dx, then I=

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |