Home
Class 12
MATHS
The value of integralint(0)^(1)(log(1+x)...

The value of integral`int_(0)^(1)(log(1+x))/(1+x^(2))dx`, is

A

`(pi)/(8)log_(e )2`

B

`(pi)/(4)log_(e )2`

C

`-(pi)/(8)log_(e )2`

D

`-(pi)/(4) log_(e ) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx \), we will follow a systematic approach: ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). This gives us \( dx = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x = 1 \), \( \theta = \frac{\pi}{4} \) Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\log(1+\tan \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta \] ### Step 2: Simplifying the Integral Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan \theta) \, d\theta \] ### Step 3: Using the Property of Integrals We can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \] In our case, \( a = \frac{\pi}{4} \). Therefore, we have: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan\left(\frac{\pi}{4} - \theta\right)\right) \, d\theta \] ### Step 4: Simplifying Further Using the identity \( \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta} \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) \, d\theta \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan \theta}\right) \, d\theta \] ### Step 5: Splitting the Logarithm We can split the logarithm: \[ I = \int_{0}^{\frac{\pi}{4}} \log(2) \, d\theta - \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \] The first integral evaluates to: \[ \log(2) \cdot \frac{\pi}{4} \] ### Step 6: Combining the Results Now we have: \[ I = \frac{\pi}{4} \log(2) - I \] Adding \( I \) to both sides gives: \[ 2I = \frac{\pi}{4} \log(2) \] Thus, \[ I = \frac{\pi}{8} \log(2) \] ### Final Answer The value of the integral is: \[ \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log(2) \]

To solve the integral \( I = \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx \), we will follow a systematic approach: ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). This gives us \( dx = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x = 1 \), \( \theta = \frac{\pi}{4} \) Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log(1+x))/(1+x)dx

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

The value of int_(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(0)^(1) log sin ((pix)/(2))dx is

int_(0)^(1)x log (1+2 x)dx

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int_(0)^(oo)(x log x)/((1+x^(2))^(2))dx is 0(b)log7(c)5log13(d) none of these

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of integralint(0)^(1)(log(1+x))/(1+x^(2))dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |