Home
Class 12
MATHS
The value of the integral int(0)^(a) (1)...

The value of the integral `int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx`, is

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} \, dx \), we will use the substitution \( x = a \sin \theta \). Let's go through the steps: ### Step 1: Substitute \( x = a \sin \theta \) When \( x = 0 \), \( \theta = 0 \) and when \( x = a \), \( \theta = \frac{\pi}{2} \). Thus, the limits of integration change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 2: Calculate \( dx \) Differentiating \( x = a \sin \theta \) gives: \[ dx = a \cos \theta \, d\theta \] ### Step 3: Substitute in the integral Now substituting \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - (a \sin \theta)^2}} \, d\theta \] The term under the square root simplifies as follows: \[ \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos \theta}{a \sin \theta + a \cos \theta} \, d\theta \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \, d\theta \] ### Step 4: Set up the second integral Let’s denote this integral as \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \, d\theta \] Now, we will consider the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta}{\sin \theta + \cos \theta} \, d\theta \] ### Step 5: Add the two integrals Adding the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos \theta}{\sin \theta + \cos \theta} + \frac{\sin \theta}{\sin \theta + \cos \theta} \right) d\theta \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta} \, d\theta = \int_{0}^{\frac{\pi}{2}} 1 \, d\theta \] ### Step 6: Evaluate the integral The integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2} \] Thus, we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{4}} \]

To solve the integral \( I = \int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} \, dx \), we will use the substitution \( x = a \sin \theta \). Let's go through the steps: ### Step 1: Substitute \( x = a \sin \theta \) When \( x = 0 \), \( \theta = 0 \) and when \( x = a \), \( \theta = \frac{\pi}{2} \). Thus, the limits of integration change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 2: Calculate \( dx \) Differentiating \( x = a \sin \theta \) gives: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |