Home
Class 12
MATHS
The value of int(0)^(pi//2) (2log sin x-...

The value of `int_(0)^(pi//2) (2log sin x-log sin 2x)dx`, is

A

`(pi)/(2)log2`

B

`-(pi)/(2)log2`

C

`pi log2`

D

`-pi log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the expression for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \] ### Step 2: Substitute \( \sin 2x \) Using the double angle formula, we know that: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite \( \log \sin 2x \): \[ \log \sin 2x = \log(2 \sin x \cos x) = \log 2 + \log \sin x + \log \cos x \] Substituting this back into the integral gives: \[ I = \int_{0}^{\frac{\pi}{2}} \left( 2 \log \sin x - (\log 2 + \log \sin x + \log \cos x) \right) \, dx \] ### Step 3: Simplify the integral Now, simplify the expression inside the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( 2 \log \sin x - \log 2 - \log \sin x - \log \cos x \right) \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \log \sin x - \log 2 - \log \cos x \right) \, dx \] \[ I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{\sin x}{2 \cos x} \right) \, dx \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \int_{0}^{\frac{\pi}{2}} \log 2 \, dx - \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \] The second integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} \log 2 \, dx = \frac{\pi}{2} \log 2 \] ### Step 5: Use symmetry Using the property of definite integrals, we know: \[ \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx \] Let \( J = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx \). Thus: \[ I = J - \frac{\pi}{2} \log 2 - J = -\frac{\pi}{2} \log 2 \] ### Final Result Therefore, the value of the integral is: \[ \boxed{-\frac{\pi}{2} \log 2} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the expression for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(2log sin x-log sin2x)dx

int_ (0) ^ (pi) x log sin xdx

int_(0)^(pi)log sin^(2)x dx=

int_(0)^((pi)/(2))log(sin x)dx

The value of int_0^(pi/2)sin2x.log tanxdx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(pi//2) (2log sin x-log sin 2x)dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |