Home
Class 12
MATHS
The value of int(0)^(pi//2n) (1)/(1+cos ...

The value of `int_(0)^(pi//2n) (1)/(1+cos nx)dx`, is

A

0

B

`(pi)/(4n)`

C

`(pi)/(2n)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cos(nx)} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as follows: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cos(nx)} \, dx \] ### Step 2: Use the Identity for Cosine Using the identity \( \cos(nx) = \frac{\sin^2(nx) + \cos^2(nx)}{1} \), we can express the integral in terms of sine and cosine. However, a more useful transformation is to express it in terms of cotangent: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cot(nx)} \, dx \] ### Step 3: Simplify the Denominator We can rewrite \( \cot(nx) \) as \( \frac{\cos(nx)}{\sin(nx)} \): \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{\sin(nx)}{\sin(nx) + \cos(nx)} \, dx \] ### Step 4: Change of Variable Now, we will perform a change of variable. Let \( t = nx \), then \( dx = \frac{dt}{n} \). The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{2n} \), \( t = \frac{\pi}{2} \) Thus, the integral becomes: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} \, dt \] ### Step 5: Use Symmetry Property of Integrals Using the property of integrals, we know: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] For our case, we have: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} \, dt \] ### Step 6: Combine the Two Integrals Let’s denote the two integrals: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} \, dt \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} \, dt \] Thus, we have: \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} 1 \, dt = \frac{\pi}{2} \] ### Step 7: Solve for \( I \) Since \( I_1 = I \) and \( I_2 = I \), we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Step 8: Final Result Now, substituting back, we find: \[ I = \frac{\pi}{4n} \] Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cos(nx)} \, dx \) is: \[ \boxed{\frac{\pi}{4n}} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cos(nx)} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as follows: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cos(nx)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^(pi//2) (dx)/(1+2 cos x)

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The value of int_(0)^((pi)/(2))(cos3x+1)/(cos x-1)dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(pi//2n) (1)/(1+cos nx)dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |