Home
Class 12
MATHS
int(0)^(pi//2) sin 2x log tan x dx is eq...

`int_(0)^(pi//2) sin 2x log tan x dx` is equal to

A

`pi`

B

`(pi)/(2)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \), we can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In this case, we have \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as follows: ### Step 1: Rewrite the Integral Let’s express \( I \) in terms of \( \frac{\pi}{2} - x \): \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] Using the substitution \( x = \frac{\pi}{2} - t \), we have: \[ dx = -dt \] Changing the limits accordingly, when \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Therefore, we can rewrite \( I \): \[ I = \int_{\frac{\pi}{2}}^0 \sin(2(\frac{\pi}{2} - t)) \log(\tan(\frac{\pi}{2} - t)) (-dt) \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \sin(\pi - 2t) \log(\cot t) \, dt \] ### Step 2: Simplify the Integral Since \( \sin(\pi - 2t) = \sin(2t) \) and \( \log(\cot t) = \log\left(\frac{1}{\tan t}\right) = -\log(\tan t) \): \[ I = \int_0^{\frac{\pi}{2}} \sin(2t) (-\log(\tan t)) \, dt = -\int_0^{\frac{\pi}{2}} \sin(2t) \log(\tan t) \, dt \] This means: \[ I = -I \] ### Step 3: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = 0 \] Thus, we find: \[ I = 0 \] ### Conclusion The value of the integral \( \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \) is: \[ \boxed{0} \]

To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \), we can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In this case, we have \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))sin2x log tan xdx is equal to

int_(0)^(pi//2) sin 2 x (tan x) dx=

What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

int_(0)^(pi//2) sec x log (sec x+tan x) dx is equal to

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

int_(0)^(pi//2) log (tan x ) dx=

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

int_(0)^(pi//4) log (1+tan x) dx =?

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(pi//2) sin 2x log tan x dx is equal to

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |