Home
Class 12
MATHS
The value of the integral int(0)^(pi) (...

The value of the integral `int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx`, is

A

`(pi^(2))/(2)`

B

`(pi^(2))/(4)`

C

`(pi^(2))/(8)`

D

`(pi^(2))/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] ### Step 1: Apply the property of definite integrals Let’s denote the integral as \( I \): \[ I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \] Now, we will replace \( x \) with \( \pi - x \): \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} \, dx \] ### Step 2: Simplify the expression Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \) 2. \( I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \) Adding these two equations together: \[ 2I = \int_{0}^{\pi} \left( \frac{x \sin x}{1 + \cos^2 x} + \frac{(\pi - x) \sin x}{1 + \cos^2 x} \right) \, dx \] ### Step 4: Factor out the common terms This simplifies to: \[ 2I = \int_{0}^{\pi} \frac{(\pi \sin x)}{1 + \cos^2 x} \, dx \] ### Step 5: Solve for \( I \) Thus, we can express \( I \) as: \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^2 x} \, dx \] ### Step 6: Change of variable Now, we can use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change from \( x = 0 \) to \( x = \pi \) corresponding to \( t = 1 \) to \( t = -1 \): \[ I = \frac{\pi}{2} \int_{1}^{-1} \frac{-dt}{1 + t^2} \] Reversing the limits gives: \[ I = \frac{\pi}{2} \int_{-1}^{1} \frac{dt}{1 + t^2} \] ### Step 7: Evaluate the integral The integral \( \int \frac{dt}{1 + t^2} \) is known to be \( \tan^{-1}(t) \): \[ I = \frac{\pi}{2} \left[ \tan^{-1}(t) \right]_{-1}^{1} \] Calculating the limits: \[ I = \frac{\pi}{2} \left( \tan^{-1}(1) - \tan^{-1}(-1) \right) = \frac{\pi}{2} \left( \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \right) = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{4}} \]

To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] ### Step 1: Apply the property of definite integrals ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int_(0)^( pi/3)(x sin x)/(cos^(2)x)backslash dx is

Evaluate the integrals int_(0)^((pi)/(2))(sin x)/(1+cos^(2)x)dx

The value of the integral int_(0)^( pi)(x^(2)sin x)/((2x-pi)(1+cos^(2)x))backslash dx

The value of integral int _(0)^(pi) x f (sin x ) dx is

The value of integral int_(0)^( pi)xf(sin x)dx=

For 0 lt alt 1 ,the value of the integral int_(0)^( pi)(dx)/(1-2a cos x+a^(2)) is:

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(pi) (x sin x)/(1+cos^(2)x)dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |