Home
Class 12
MATHS
The integral int(0)^(pi) x f(sinx )dx is...

The integral `int_(0)^(pi) x f(sinx )dx` is equal to

A

`(pi)/(2)underset(0)overset(pi)intf(sin x)dx`

B

`(pi)/(4)underset(0)overset(pi)int(sin x)dx`

C

`(pi)/(2)underset(0)overset(pi//2)int (sin x)dx`

D

`(pi)/(2)underset(0)overset(pi//2)intf(cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = \pi \). Let's apply this property step by step. ### Step 1: Rewrite the integral using the property We can express \( I \) as follows: \[ I = \int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] ### Step 2: Simplify the function inside the integral Using the identity \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] ### Step 3: Split the integral Now we can split the integral into two parts: \[ I = \int_{0}^{\pi} \pi f(\sin x) \, dx - \int_{0}^{\pi} x f(\sin x) \, dx \] ### Step 4: Combine the integrals Notice that the second integral on the right side is just \( I \): \[ I = \pi \int_{0}^{\pi} f(\sin x) \, dx - I \] ### Step 5: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] Now, divide both sides by 2: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] ---

To solve the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = \pi \). Let's apply this property step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^( pi)f(sin x)dx is equivalent to

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

The value of integral int _(0)^(pi) x f (sin x ) dx is

int_(0)^(pi) x log sinx\ dx

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi/2) |sinx - cosx |dx is equal to

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The integral int(0)^(pi) x f(sinx )dx is equal to

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |