Home
Class 12
MATHS
The value of I=int(-2)^(0){x^(3)+3x^(2...

The value of
`I=int_(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)cos(x+1)}dx`, is

A

0

B

3

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-2}^{0} \left( x^3 + 3x^2 + 3x + 3 + (x+1) \cos(x+1) \cos(x+1) \right) dx, \] we will proceed step by step. ### Step 1: Rewrite the Integral First, we can rewrite the integral in a more manageable form: \[ I = \int_{-2}^{0} \left( x^3 + 3x^2 + 3x + 3 + (x+1) \cos^2(x+1) \right) dx. \] ### Step 2: Change of Variable Next, we will perform a substitution. Let \( t = x + 1 \). Then, \( x = t - 1 \) and \( dx = dt \). The limits change as follows: - When \( x = -2 \), \( t = -1 \). - When \( x = 0 \), \( t = 1 \). Thus, the integral becomes: \[ I = \int_{-1}^{1} \left( (t-1)^3 + 3(t-1)^2 + 3(t-1) + 3 + t \cos^2(t) \right) dt. \] ### Step 3: Expand the Polynomial Now, we will expand the polynomial: 1. \( (t-1)^3 = t^3 - 3t^2 + 3t - 1 \) 2. \( 3(t-1)^2 = 3(t^2 - 2t + 1) = 3t^2 - 6t + 3 \) 3. \( 3(t-1) = 3t - 3 \) Combining these, we have: \[ (t-1)^3 + 3(t-1)^2 + 3(t-1) + 3 = (t^3 - 3t^2 + 3t - 1) + (3t^2 - 6t + 3) + (3t - 3) + 3. \] Simplifying this gives: \[ t^3 + (0)t^2 + (0)t + 2 = t^3 + 2. \] ### Step 4: Substitute Back into the Integral Now, substituting back into the integral, we have: \[ I = \int_{-1}^{1} \left( t^3 + 2 + t \cos^2(t) \right) dt. \] ### Step 5: Evaluate the Integral We can split the integral into three parts: \[ I = \int_{-1}^{1} t^3 dt + \int_{-1}^{1} 2 dt + \int_{-1}^{1} t \cos^2(t) dt. \] 1. The first integral \( \int_{-1}^{1} t^3 dt = 0 \) (since \( t^3 \) is an odd function). 2. The second integral \( \int_{-1}^{1} 2 dt = 2 \times (1 - (-1)) = 4 \). 3. The third integral \( \int_{-1}^{1} t \cos^2(t) dt = 0 \) (since \( t \cos^2(t) \) is also an odd function). ### Step 6: Combine Results Combining these results, we find: \[ I = 0 + 4 + 0 = 4. \] ### Final Answer Thus, the value of the integral \( I \) is \[ \boxed{4}. \]

To solve the integral \[ I = \int_{-2}^{0} \left( x^3 + 3x^2 + 3x + 3 + (x+1) \cos(x+1) \cos(x+1) \right) dx, \] we will proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

The value of int _(0)^(1) (2x ^(2) + 3x + 3)/((x +1) (x ^(2) + 2x +2))dx is

The value of int_(0)^(pi)e^(cos^(2)x)cos^(5)3x dx is

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx

int_(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)dx is equal to (A)-4(B)0(C)4(D)6

int_(0)^(3)(1)/(x^(2)-3x+2)dx

The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

Find the value of int_(0)^(1)root(3)(2x(3)-3x^(2)-x+1)dx .

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of I=int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)cos(x+1)}d...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |