Home
Class 12
MATHS
int(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos...

`int_(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0`, is equal to

A

`pi`

B

`2pi`

C

`pi^(2)`

D

`(1)/(2)pi^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let`I=overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx" "`......(i)
Using property IV, we have
`I_(n)=overset(2pi)underset(0)int ((2pi-x)sin^(2n)(2pi-x))/(sin^(2n)(2pi-x)+cos^(2n)(2pi-x))dx`
`rArr I_(n)=overset(2pi)underset(0)int ((2pi-x)sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx`
Adding (i) and (ii), we get
`2I_(n)=2pioverset(2pi)underset(0)int (sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx`
`rArr I_(n)=overset(2pi)underset(0)int (sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx`
`rArrI_(n)=2pioverset(pi)underset(0)int (sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx " "`[Using property VII]
`rArr I_(n)=4pi overset(pi//2)underset(0)int (sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx " "`[Using property VII]
`rArrI_(n)=4pixx(pi)/(4)=pi^(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

Len N be set of natural numbers. For n in N defiine I_(n)=int_(0)^(pi) (x sin^(2n)(x))/(sin^(2n)(x)+cos^(2n)(x)) dx . Then for m,n in N

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

Evaluate the following integrals: (1-35)pi/2int_(0)^( pi/2)(sin^(n)x)/(sin^(n)+cos^(n)x)dx

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0, is equal to

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |