Home
Class 12
MATHS
If f(x)=(e^(2))/(1+e^(x)),I(1)=int(f(-a)...

If f(x)`=(e^(2))/(1+e^(x)),I_(1)=int_(f(-a))^(f(a)) xg{x(1-x)}dx` and `I_(2)=int_(f(-a))^(-f(-a)) g{x(1-x)}dx`, where g is not identify function. Then the value of `I_(2)//I_(1)`, is

A

-1

B

`1//2`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

We have, f(x)`=(e^(x))/(1+e^(x))`
`f(-x)=(e^(-x))/(1+e^(-x))=(1)/(1+e^(x))`
`:. f(x)+f(-x)=(e^(x))/(1+e^(x))+(1)/(1+e^(x))=1`
`rArr f(a)+f(-x)=1`
Now,
`I_(1)=overset(f(a))underset(f(-x))int (1-x)g{x(1-x)}dx " "`..........(i)
Using `overset(b)underset(a)int f(a+b-x)=overset(b)underset(a)intf(x)" and "f(-a)+f(a)=1` we get,
`I_(1)=overset(f(a))underset(f(-a))int(1-x)g{(1-x)(1-(1-x))}dx`
`rArr I_(1)=overset(f(a))underset(f(-a))int (1-x)g{x(1-x)}dx" "`...........(ii)
Adding (i) and (ii), we get
`2I_(1)=overset(f(a))underset(f(-a))int g{x(1-x)}dx`
`rArr 2I_(1)=I_(2)rArr(I_(2))/(I_(1))=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

f(x)=(e^(x))/(1+e^(x)),I_(1)=int(f(-a))^(f(a))xg(a(1-x)dx, and I_(2)=int_(f(-a))^(f(a))g(x(1-x))dx then the value of (I_(2))/(I_(1)) is (a)-1(b)-2(c)2(d)1g(x(1-x))dx

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If f(x)=(e^(2))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |