Home
Class 12
MATHS
The value of int(0)^(32pi//3) sqrt(1+cos...

The value of `int_(0)^(32pi//3) sqrt(1+cos2x)dx` is

A

`(44+sqrt(3))/(sqrt(2))`

B

`(44-sqrt(3))/(sqrt(2))`

C

`(22-sqrt(3))/(sqrt(2))`

D

`(22+sqrt(3))/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We know that: \[ 1 + \cos 2x = 2 \cos^2 x \] Thus, we can rewrite the integrand: \[ \sqrt{1 + \cos 2x} = \sqrt{2 \cos^2 x} = \sqrt{2} |\cos x| \] So, the integral becomes: \[ I = \int_{0}^{\frac{32\pi}{3}} \sqrt{2} |\cos x| \, dx \] ### Step 2: Factor out the constant We can factor out \(\sqrt{2}\): \[ I = \sqrt{2} \int_{0}^{\frac{32\pi}{3}} |\cos x| \, dx \] ### Step 3: Determine the period of \(|\cos x|\) The function \(|\cos x|\) has a period of \(\pi\). We can find how many complete periods fit into the interval \([0, \frac{32\pi}{3}]\): \[ \frac{32\pi/3}{\pi} = \frac{32}{3} = 10 + \frac{2}{3} \] This means there are 10 complete periods of \(|\cos x|\) and an additional \(\frac{2}{3}\) of a period. ### Step 4: Break the integral into parts We can express the integral as: \[ I = \sqrt{2} \left( \int_{0}^{10\pi} |\cos x| \, dx + \int_{10\pi}^{\frac{32\pi}{3}} |\cos x| \, dx \right) \] ### Step 5: Calculate the integral over one period The integral of \(|\cos x|\) over one period \([0, \pi]\) is: \[ \int_{0}^{\pi} |\cos x| \, dx = \int_{0}^{\pi} \cos x \, dx = [\sin x]_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 - 0 = 2 \] Thus, for 10 periods: \[ \int_{0}^{10\pi} |\cos x| \, dx = 10 \cdot 2 = 20 \] ### Step 6: Calculate the remaining integral Now we need to calculate: \[ \int_{10\pi}^{\frac{32\pi}{3}} |\cos x| \, dx \] The interval \([10\pi, \frac{32\pi}{3}]\) can be rewritten as: \[ 10\pi \text{ to } 10\pi + \frac{2\pi}{3} \] This corresponds to the interval \([0, \frac{2\pi}{3}]\) for \(|\cos x|\). ### Step 7: Calculate the integral from \(0\) to \(\frac{2\pi}{3}\) \[ \int_{0}^{\frac{2\pi}{3}} |\cos x| \, dx = \int_{0}^{\frac{2\pi}{3}} \cos x \, dx = [\sin x]_{0}^{\frac{2\pi}{3}} = \sin\left(\frac{2\pi}{3}\right) - \sin(0) = \frac{\sqrt{3}}{2} - 0 = \frac{\sqrt{3}}{2} \] ### Step 8: Combine the results Now we can combine everything: \[ I = \sqrt{2} \left( 20 + \frac{\sqrt{3}}{2} \right) \] \[ I = 20\sqrt{2} + \frac{\sqrt{6}}{2} \] ### Final Result Thus, the value of the integral is: \[ I = 20\sqrt{2} + \frac{\sqrt{6}}{2} \]

To solve the integral \( I = \int_{0}^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We know that: \[ 1 + \cos 2x = 2 \cos^2 x \] Thus, we can rewrite the integrand: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int_(0)^(pi//4)sqrt(1+cos2x)dx

int _(0)^(pi//2) sqrt(1+ cos x dx)

int_(0)^( pi)(sqrt(1+cos2x))/(2)dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(32pi//3) sqrt(1+cos2x)dx is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |