Home
Class 12
MATHS
If y=int(0)^(x) f(t)sin{(k(x-t)}dt, the...

If `y=int_(0)^(x) f(t)sin{(k(x-t)}dt`, then `(d^(2)y)/(dx^(2))+k^(2)y=`

A

f(x)

B

k f(x)

C

`k^(2)f(x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`y=overset(x)underset(0)int f(t) sin {k(x-t)}dt`
Differentiating both sides w.r.to x, we obtain
`(dy)/(dx)=overset(x)underset(0)int (del)/(delx){f(t) sin k(x-t)} dt+(d(x))/(dx)xx{f(x) sin k (x-x)}-(d)/(dx)(0)xx{f(0) sin k(x-0)}`
`rArr (dy)/(dx)=k overset(x)underset(0)int f(t)cos k(x-t)dt+f(x)xx0-0`
`rArr (dy)/(dx)=koverset(x)underset(0)int f(t)cos k(x-t)dt`
Diffrerentiating both sides w.r. to x, we get
`(dy)/(dx)=k[overset(x)underset(0)int (del)/(delx){f(t) cos k(x-t)} dt+(d)/(dx)(x){f(x) cos k (x-x)}-(d)/(dx)(0){f(0)cos k (x-0)}]`
` rArr (d^(2)y)/(dx^(2))=k[-koverset(x)underset(0)int f(t)sin k (x-1) dt+f(x)-0]`
`rArr (d^(2)y)/(dx^(2))=-k^(2)y+kf(x) rArr(d^(2)y)/(dx^(2))+k^(2)y=kf(x)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If y=int_(0)^(x)f(t)sin{k(x-t)dt, then prove that (dt^(2)y)/(dx^(2))+k^(2)y=kf(x)

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If y = sin t and x = 2 t then (d^(2)y)/(dx^(2)) =

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If y=sin(t^2) , then (d^2y)/(dt^2) will be

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If y=int(0)^(x) f(t)sin{(k(x-t)}dt, then (d^(2)y)/(dx^(2))+k^(2)y=

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |