Home
Class 12
MATHS
The value of int(0)^(sin^(2)) sin^(-1)...

The value of
`int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt`, is

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ I = \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] ### Step 1: Differentiate the Expression To simplify the evaluation, we will differentiate \( I \) with respect to \( x \): \[ \frac{dI}{dx} = \frac{d}{dx} \left( \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \right) \] Using Leibniz's rule for differentiation under the integral sign, we have: \[ \frac{dI}{dx} = \sin^{-1}(\sqrt{\sin^2 x}) \cdot \frac{d}{dx}(\sin^2 x) + \cos^{-1}(\sqrt{\cos^2 x}) \cdot \frac{d}{dx}(\cos^2 x) \] ### Step 2: Compute the Derivatives Now, we compute the derivatives of \( \sin^2 x \) and \( \cos^2 x \): \[ \frac{d}{dx}(\sin^2 x) = 2 \sin x \cos x \] \[ \frac{d}{dx}(\cos^2 x) = -2 \sin x \cos x \] ### Step 3: Substitute Back into the Derivative Substituting these derivatives back into the expression for \( \frac{dI}{dx} \): \[ \frac{dI}{dx} = \sin^{-1}(\sin x) \cdot (2 \sin x \cos x) + \cos^{-1}(\cos x) \cdot (-2 \sin x \cos x) \] ### Step 4: Simplify the Expression Using the identities \( \sin^{-1}(\sin x) = x \) and \( \cos^{-1}(\cos x) = x \): \[ \frac{dI}{dx} = x \cdot (2 \sin x \cos x) - x \cdot (2 \sin x \cos x) = 0 \] ### Step 5: Conclude the Result Since \( \frac{dI}{dx} = 0 \), this implies that \( I \) is constant for all \( x \). To find the value of \( I \), we can evaluate it at a specific value of \( x \), say \( x = 0 \): \[ I(0) = \int_{0}^{\sin^2(0)} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2(0)} \cos^{-1}(\sqrt{t}) \, dt \] Calculating these integrals: \[ I(0) = \int_{0}^{0} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{1} \cos^{-1}(\sqrt{t}) \, dt = 0 + \int_{0}^{1} \cos^{-1}(\sqrt{t}) \, dt \] ### Step 6: Evaluate the Remaining Integral Using the substitution \( u = \sqrt{t} \) (thus \( t = u^2 \) and \( dt = 2u \, du \)): \[ \int_{0}^{1} \cos^{-1}(\sqrt{t}) \, dt = \int_{0}^{1} \cos^{-1}(u) \cdot 2u \, du \] This integral can be evaluated using integration by parts or known integral results. The result of this integral is \( \frac{\pi}{4} \). ### Final Result Thus, we conclude that: \[ I = \frac{\pi}{4} \]

To solve the given problem, we need to evaluate the expression: \[ I = \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] ### Step 1: Differentiate the Expression To simplify the evaluation, we will differentiate \( I \) with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

Statement-1: int_(0)^(sin^(2)x) sin^(-1)sqrt(t dt)+int_(0)^(cos^(2)x) cos^(-1)sqrt(t dt)=(pi)/(4) for all x. Statement-2: (d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-psi'(x)f(psi(x))

Prove that: y=int_((1)/(8))^(sin^(2)x)sin^(-1)sqrt(t)dt+int_((1)/(8))^(cos^(2)x)cos^(-1)sqrt(t) where 0<=x<=(pi)/(2), is the equation of a straight line parallel to the x-axis.Find the equation.

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

int_(0)^(9)[sqrt(t)]dt

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |