Home
Class 12
MATHS
Let f:(0,oo) in R be given f(x)=int(1/...

Let `f:(0,oo) in R` be given
`f(x)=int_(1//x)^(x) e^-(t+(1)/(t))(1)/(t)dt`, then

A

f(x) is monotonically increasing on `[1,oo]`

B

f(x) is monotonically increasing on (0,1)

C

f(x) is monotonocally decreasing on (0,1)

D

`f(2^(x))`is an odd function of x on R

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

We have,
`f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt`
`rArr f'(x)=(1)/(x)e^-(x+(1)/(x))+(x)/(x^(2))e^-(x-(1)/(x))`
`rArr f'(x)=(2)/(x)e-(x+(1)/(x)) gt 0` for all `x in [1,oo)`
`:.f(x)` is monotonically increasing on `[1,oo)`.
So, option (a) is correct
Again, `f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(dt)/(t)`
`rArr f((1)/(x))=overset(1//x)underset(x)int e^-(t+(1)/(t))(dt)/(t)`
`rArr f((1)/(x))=overset(u)underset(1//u)int ue^(-(u+(1)/(u)))((-1)/(u^(2)))du` where `t=(1)/(u)`
`rArr f((1)/(x))=-overset(u)underset(1//u)int e^-(u+(1)/(2))(1)/(u)du=-overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt=-f(x)`
`:.f(x)+f((1)/(x))=0`. So, option (c ) is correct.
Finally, `f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt`
`rArr g(x)f(2^(x))=overset(2^(x))underset(2^(-x))int e^-(t+(1)/(t))(1)/(t)dt`
`rArr g(-x)=overset(2^-(x))underset(2^(x))int e^-(t+(1)/(t))(1)/(t)dt=-overset(2^(x))underset(2^-(x))int e^-(u+(1)/(2))(1)/(u)du=-g(x)`
`g(x)=f(2^(x))` is an odd function of x on R.
So,option(d) is correct.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R

Let f:(0,oo)rarr RR be given by f(x)=int_(1//x)^x e^-(t+1/t) dt/t. Then (i) f(x) is monotonically increases in (1,infty) (ii)f(x) is monotonically decreases in (0.1) (iii) f(x) +f(1/x)= 0 far all x in (0,infty) (iv) f(2^x) is an odd function of x on R

Let f:(0, oo) in R and F(x) = int_(0)^(x) f(t) dt . If F(x^(2))=x^(2)(1+x) then f (4) equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_(3)^(x)(1)/(sqrt(t^(4)+3t^(2)+13))dt then g^(1)(0)=

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. Let f:(0,oo) in R be given f(x)=int(1//x)^(x) e^-(t+(1)/(t))(1)/(t)d...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |