Home
Class 12
MATHS
Let I=int(0)^(1) (sin x)/(sqrt(x))dx and...

Let `I=int_(0)^(1) (sin x)/(sqrt(x))dx` and `J=int_(0)^(1) (cos x)/(sqrt(x)) dx`.
Then , which one of the following is true?

A

`I gt (2)/(3)" and "J gt 2`

B

`I lt (2)/(3)" and "J lt 2`

C

`I lt (2)/(3)" and "J gt 2`

D

`I gt (2)/(3)" and "J lt 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I \) and \( J \) defined as follows: \[ I = \int_0^1 \frac{\sin x}{\sqrt{x}} \, dx \] \[ J = \int_0^1 \frac{\cos x}{\sqrt{x}} \, dx \] ### Step 1: Estimate \( I \) We know that for \( x \in [0, 1] \), \( \sin x \) is less than or equal to \( x \). Therefore, we can write: \[ \frac{\sin x}{\sqrt{x}} \leq \frac{x}{\sqrt{x}} = \sqrt{x} \] Now, we can integrate both sides from 0 to 1: \[ I = \int_0^1 \frac{\sin x}{\sqrt{x}} \, dx \leq \int_0^1 \sqrt{x} \, dx \] Calculating the right-hand side: \[ \int_0^1 \sqrt{x} \, dx = \int_0^1 x^{1/2} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_0^1 = \frac{2}{3} \left( 1^{3/2} - 0^{3/2} \right) = \frac{2}{3} \] Thus, we have: \[ I < \frac{2}{3} \] ### Step 2: Estimate \( J \) Next, we consider \( J \). For \( x \in [0, 1] \), \( \cos x \) is less than or equal to 1. Therefore, we can write: \[ \frac{\cos x}{\sqrt{x}} \leq \frac{1}{\sqrt{x}} \] Integrating both sides from 0 to 1 gives: \[ J = \int_0^1 \frac{\cos x}{\sqrt{x}} \, dx \leq \int_0^1 \frac{1}{\sqrt{x}} \, dx \] Calculating the right-hand side: \[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-1/2} \, dx = \left[ \frac{x^{1/2}}{1/2} \right]_0^1 = 2 \left( 1^{1/2} - 0^{1/2} \right) = 2 \] Thus, we have: \[ J < 2 \] ### Conclusion From our estimates, we have: \[ I < \frac{2}{3} \quad \text{and} \quad J < 2 \] This implies that \( I < J \). ### Final Answer Thus, the correct relationship between \( I \) and \( J \) is: \[ I < J \]

To solve the problem, we need to evaluate the integrals \( I \) and \( J \) defined as follows: \[ I = \int_0^1 \frac{\sin x}{\sqrt{x}} \, dx \] \[ J = \int_0^1 \frac{\cos x}{\sqrt{x}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I=int_(0)^(1)(sin)/(sqrt(x))dx and J=int_(0)^(1)(cos x)/(sqrt(x))dx Then which one of the following is true? (1) I>(2)/(3) and j>2(2)I 2(4)I>(2)/(3) and j<2

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

int_(0)^(1)sin^(-1)sqrt(x)dx

Let I=int_0^1 (sinx)/sqrtx dx and J=int_0^1 (cos x)/sqrtx dx . Then which of the following is true?

If I=int_(0)^(1)(1)/(sqrt(2-x-x^(2)))*dx then which of the following is true

int_(0)^(9)(dx)/(1+sqrt(x))

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

If I_(1)=int_(0)^(pi//2) x sin x dx and I_(2) = int_(0)^(pi//2) x cos x dx ,then which one of the following is true ?

int_0^1 sin^-1x/sqrt(1+x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. Let I=int(0)^(1) (sin x)/(sqrt(x))dx and J=int(0)^(1) (cos x)/(sqrt(x)...

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |