Home
Class 12
MATHS
int(0)^(pi^(2)//4) sin sqrt(x)dx equals ...

`int_(0)^(pi^(2)//4) sin sqrt(x)dx` equals to

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi^2}{4}} \sin(\sqrt{x}) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, \( x = t^2 \) and \( dx = 2t \, dt \). ### Step 2: Change the limits of integration When \( x = 0 \), \( t = \sqrt{0} = 0 \). When \( x = \frac{\pi^2}{4} \), \( t = \sqrt{\frac{\pi^2}{4}} = \frac{\pi}{2} \). ### Step 3: Rewrite the integral The integral now becomes: \[ \int_{0}^{\frac{\pi}{2}} \sin(t) \cdot 2t \, dt = 2 \int_{0}^{\frac{\pi}{2}} t \sin(t) \, dt \] ### Step 4: Integration by parts We will use integration by parts where we let: - \( u = t \) (thus \( du = dt \)) - \( dv = \sin(t) \, dt \) (thus \( v = -\cos(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t \sin(t) \, dt = -t \cos(t) - \int -\cos(t) \, dt \] \[ = -t \cos(t) + \int \cos(t) \, dt \] \[ = -t \cos(t) + \sin(t) \] ### Step 5: Evaluate the integral from 0 to \( \frac{\pi}{2} \) Now we need to evaluate: \[ 2 \left[ -t \cos(t) + \sin(t) \right]_{0}^{\frac{\pi}{2}} \] Calculating at the upper limit \( t = \frac{\pi}{2} \): \[ -t \cos(t) + \sin(t) = -\frac{\pi}{2} \cdot \cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) = 0 + 1 = 1 \] Calculating at the lower limit \( t = 0 \): \[ -t \cos(t) + \sin(t) = -0 \cdot \cos(0) + \sin(0) = 0 + 0 = 0 \] Thus, we have: \[ 2 \left[ 1 - 0 \right] = 2 \] ### Final Answer The value of the integral \( \int_{0}^{\frac{\pi^2}{4}} \sin(\sqrt{x}) \, dx \) is \( \boxed{2} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)sin|x|dx

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

Knowledge Check

  • The value of int_(0)^(pi/4) sqrt(tanx) dx+int_(0)^(pi/4) sqrt(cotx) dx is equal to

    A
    `pi/4`
    B
    `pi/2`
    C
    `(pi)/(2sqrt(2))`
    D
    `(pi)/(sqrt(2))`
  • int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    A
    `6/35`
    B
    `2/21`
    C
    `2/15`
    D
    `2/35`
  • The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

    A
    `pi/4`
    B
    `pi/2`
    C
    `pi/(2sqrt2)`
    D
    `pi/sqrt2`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi//6) sqrt(1-sin 2x) dx

    int_(0)^( pi)(sin nx)/(sin x)dx is equal to

    What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    int_(0)^(2pi) sin^(5) (x/4) dx is equal to

    int_0^(pi//4)sqrt(1+sin2x) dx equals