Home
Class 12
MATHS
int(1//2)^(2) |log(10)x|dx equals to...

`int_(1//2)^(2) |log_(10)x|dx` equals to

A

`log10(8//e)`

B

`(1)/(2)log10(8//e)`

C

`log10(2//e)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx \), we will break it down into manageable steps. ### Step 1: Analyze the function \( |\log_{10} x| \) The logarithm function \( \log_{10} x \) is negative for \( x \in (0, 1) \) and positive for \( x > 1 \). Therefore, we can break the integral into two parts based on the behavior of the logarithm: \[ \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx = \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx + \int_{1}^{2} \log_{10} x \, dx \] ### Step 2: Compute the first integral \( \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx \) To compute this integral, we use integration by parts. Let: - \( u = -\log_{10} x \) (thus \( du = -\frac{1}{x \ln(10)} \, dx \)) - \( dv = dx \) (thus \( v = x \)) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int -\log_{10} x \, dx = -x \log_{10} x + \int x \cdot \frac{1}{x \ln(10)} \, dx = -x \log_{10} x + \frac{x}{\ln(10)} \] Now, we evaluate this from \( \frac{1}{2} \) to \( 1 \): \[ \left[-x \log_{10} x + \frac{x}{\ln(10)}\right]_{\frac{1}{2}}^{1} \] Calculating at the limits: At \( x = 1 \): \[ -1 \cdot \log_{10} 1 + \frac{1}{\ln(10)} = 0 + \frac{1}{\ln(10)} = \frac{1}{\ln(10)} \] At \( x = \frac{1}{2} \): \[ -\frac{1}{2} \log_{10} \frac{1}{2} + \frac{\frac{1}{2}}{\ln(10)} = -\frac{1}{2} \left(-\log_{10} 2\right) + \frac{1}{2 \ln(10)} = \frac{1}{2} \log_{10} 2 + \frac{1}{2 \ln(10)} \] Thus, the first integral becomes: \[ \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx = \frac{1}{\ln(10)} - \left(\frac{1}{2} \log_{10} 2 + \frac{1}{2 \ln(10)}\right) \] Simplifying this gives: \[ \frac{1}{\ln(10)} - \frac{1}{2 \ln(10)} - \frac{1}{2} \log_{10} 2 = \frac{1}{2 \ln(10)} - \frac{1}{2} \log_{10} 2 \] ### Step 3: Compute the second integral \( \int_{1}^{2} \log_{10} x \, dx \) Using integration by parts again: Let: - \( u = \log_{10} x \) (thus \( du = \frac{1}{x \ln(10)} \, dx \)) - \( dv = dx \) (thus \( v = x \)) Then: \[ \int \log_{10} x \, dx = x \log_{10} x - \int x \cdot \frac{1}{x \ln(10)} \, dx = x \log_{10} x - \frac{x}{\ln(10)} \] Now evaluate from \( 1 \) to \( 2 \): \[ \left[x \log_{10} x - \frac{x}{\ln(10)}\right]_{1}^{2} \] Calculating at the limits: At \( x = 2 \): \[ 2 \log_{10} 2 - \frac{2}{\ln(10)} \] At \( x = 1 \): \[ 1 \cdot \log_{10} 1 - \frac{1}{\ln(10)} = 0 - \frac{1}{\ln(10)} = -\frac{1}{\ln(10)} \] Thus, the second integral becomes: \[ \left(2 \log_{10} 2 - \frac{2}{\ln(10)}\right) - \left(-\frac{1}{\ln(10)}\right) = 2 \log_{10} 2 - \frac{2}{\ln(10)} + \frac{1}{\ln(10)} = 2 \log_{10} 2 - \frac{1}{\ln(10)} \] ### Step 4: Combine both integrals Now we combine the results from Step 2 and Step 3: \[ \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx = \left(\frac{1}{2 \ln(10)} - \frac{1}{2} \log_{10} 2\right) + \left(2 \log_{10} 2 - \frac{1}{\ln(10)}\right) \] Simplifying this expression: Combine the terms: \[ = \frac{1}{2 \ln(10)} - \frac{1}{2} \log_{10} 2 + 2 \log_{10} 2 - \frac{1}{\ln(10)} \] Combine like terms: \[ = \frac{1}{2 \ln(10)} - \frac{2}{2 \ln(10)} + \frac{3}{2} \log_{10} 2 = -\frac{1}{2 \ln(10)} + \frac{3}{2} \log_{10} 2 \] ### Final Answer Thus, the final answer is: \[ \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx = -\frac{1}{2 \ln(10)} + \frac{3}{2} \log_{10} 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(4) log_(e)[x]dx equals

The value of int _(1)^(e) 10^(log_(e)x) dx is equal to

int_(0)^(1)log((1)/(x)-1)dx is equal to

int_(1)^(2)(log x)/(x)dx=

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

What is int_(0)^(2) e^(ln) x dx equal to ?

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int(1)^((4sqrt(3))/(5)-1)(x+2)/(sqrt(x^(2)+2x-3))dx equal to

    Text Solution

    |

  2. int(0)^(pi^(2)//4) sin sqrt(x)dx equals to

    Text Solution

    |

  3. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  4. The value of the integral int(-pi//2)^(pi//2) log((a-sin theta)/(a+sin...

    Text Solution

    |

  5. The value of the integral int(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, is

    Text Solution

    |

  6. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  7. The value of int(-1)^(3) (|X2|+[x]dx is ([x] stands for greatest integ...

    Text Solution

    |

  8. If f(x)==|{:(sinx+sin2x+sin3,xsin2,xsin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  9. Evaluate: ("lim")(xvecoo)((int0xe^x^2dx)^2)/(int0x e^(2x)^2dx)

    Text Solution

    |

  10. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  11. The value of int(0)^(1000) e^(x-[x])dx, is

    Text Solution

    |

  12. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  13. The difference between the greatest and least values of the function p...

    Text Solution

    |

  14. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  15. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  16. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  17. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  18. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  19. If a lt int(0)^(2pi)) (1)/(10+3 cos x)dx lt b. Then the ordered pair (...

    Text Solution

    |

  20. The value of the integral int0^(oo) (x logx)/((1+x^(2)))dxis

    Text Solution

    |