Home
Class 12
MATHS
The value of the integral int(pi//3)^(pi...

The value of the integral `int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx`, is

A

`(pi//3-logtan3pi//2)`

B

`2(2pi//3-logtan5pi//12)`

C

`3(pi//2-logsinpi//12)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^2 x} \, dx, \] we will use integration by parts. ### Step 1: Rewrite the integral We can rewrite \(\cos^2 x\) as \(\cos x \cdot \cos x\), so we have: \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} x \sin x \sec^2 x \, dx. \] ### Step 2: Apply integration by parts Let \(u = x\) and \(dv = \sin x \sec^2 x \, dx\). Then, we differentiate and integrate: \[ du = dx, \quad v = \int \sin x \sec^2 x \, dx. \] We know that \(\sec^2 x = 1 + \tan^2 x\) and \(\sin x = \tan x \cos x\), so: \[ v = \int \tan x \, dx = -\log |\cos x| + C. \] ### Step 3: Set up integration by parts formula Using the integration by parts formula \(\int u \, dv = uv - \int v \, du\): \[ I = \left[ x \left(-\log |\cos x|\right) \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} - \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} -\log |\cos x| \, dx. \] ### Step 4: Evaluate the boundary terms Now we evaluate the boundary terms: \[ \left[ -x \log |\cos x| \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = -\left(\frac{\pi}{3} \log |\cos(\frac{\pi}{3})| - \left(-\frac{\pi}{3} \log |\cos(-\frac{\pi}{3})|\right)\right). \] Since \(\cos(\frac{\pi}{3}) = \cos(-\frac{\pi}{3}) = \frac{1}{2}\): \[ = -\left(\frac{\pi}{3} \log \frac{1}{2} + \frac{\pi}{3} \log \frac{1}{2}\right) = -\left(\frac{2\pi}{3} \log \frac{1}{2}\right) = \frac{2\pi}{3} \log 2. \] ### Step 5: Evaluate the integral of \(-\log |\cos x|\) Next, we need to evaluate: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \log |\cos x| \, dx. \] This integral is known and can be evaluated as: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \log |\cos x| \, dx = -\frac{\pi}{3} \log 2. \] ### Step 6: Combine results Now substituting back into our expression for \(I\): \[ I = \frac{2\pi}{3} \log 2 + \frac{\pi}{3} \log 2 = \frac{3\pi}{3} \log 2 = \pi \log 2. \] Thus, the value of the integral is: \[ \boxed{\pi \log 2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^( pi/3)(x sin x)/(cos^(2)x)backslash dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

int_(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2)x)dx is

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

The value of the integral int _(-pi//2)^(pi//2) sqrt(cos x - cos ^(3) x ) dx is

int_(pi/3)^(pi/2) sinx dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  2. The value of the integral int(-pi//2)^(pi//2) log((a-sin theta)/(a+sin...

    Text Solution

    |

  3. The value of the integral int(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, is

    Text Solution

    |

  4. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  5. The value of int(-1)^(3) (|X2|+[x]dx is ([x] stands for greatest integ...

    Text Solution

    |

  6. If f(x)==|{:(sinx+sin2x+sin3,xsin2,xsin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  7. Evaluate: ("lim")(xvecoo)((int0xe^x^2dx)^2)/(int0x e^(2x)^2dx)

    Text Solution

    |

  8. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  9. The value of int(0)^(1000) e^(x-[x])dx, is

    Text Solution

    |

  10. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  11. The difference between the greatest and least values of the function p...

    Text Solution

    |

  12. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  13. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  14. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  15. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  16. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  17. If a lt int(0)^(2pi)) (1)/(10+3 cos x)dx lt b. Then the ordered pair (...

    Text Solution

    |

  18. The value of the integral int0^(oo) (x logx)/((1+x^(2)))dxis

    Text Solution

    |

  19. The value of the integral int(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

    Text Solution

    |

  20. The value of the integral int(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx...

    Text Solution

    |