Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(x^(2)+x...

The value of `int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx` is equal to

A

0

B

2

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 + x \cos x + \tan^5 x + 1 \right) dx, \] we can break it down into separate integrals: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^5 x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 1: Evaluate \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx\) The function \(x^2\) is an even function, so we can use the property of even functions: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx. \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx = 2 \int_{0}^{\frac{\pi}{2}} x^2 \, dx. \] Calculating the integral: \[ \int x^2 \, dx = \frac{x^3}{3} \quad \text{from } 0 \text{ to } \frac{\pi}{2} = \frac{(\frac{\pi}{2})^3}{3} - 0 = \frac{\pi^3}{24}. \] So, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx = 2 \cdot \frac{\pi^3}{24} = \frac{\pi^3}{12}. \] ### Step 2: Evaluate \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx\) The function \(x \cos x\) is an odd function because: \[ f(-x) = -x \cos(-x) = -x \cos x = -f(x). \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx = 0. \] ### Step 3: Evaluate \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^5 x \, dx\) The function \(\tan^5 x\) is also an odd function: \[ f(-x) = \tan^5(-x) = -\tan^5(x) = -f(x). \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^5 x \, dx = 0. \] ### Step 4: Evaluate \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx\) This integral is straightforward: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi. \] ### Final Calculation Now, we can combine all the results: \[ I = \frac{\pi^3}{12} + 0 + 0 + \pi = \frac{\pi^3}{12} + \pi. \] Thus, the final value of the integral is: \[ \boxed{\frac{\pi^3}{12} + \pi}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

The value of int_(-pi/2)^( pi/2)(x^(3)+x cos x+tan^(5)x+1)dx is equal to (A)0(B)2C)pi(D) none of these

The value of int_(-pi/2)^( pi/2)(x^(3)+x cos x+tan^(5)x+1)dx is equal to (A)0(C)pi(B)2(D) none of these (i) 0 (ii)2(iii) pi (iv) none of these

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

The value of int_(-(pi)/(2))^((pi)/(2))(x^(3)+x cos x+tan^(5)x+1)dx

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

The value of int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

Choose the correct answer The Value of int_(-(pi)/(2))^((pi)/(2))(x^(3)+x cos x+tan^(5)x+1)dx is (A)0 (B) 2(C)pi(D)1

The value of int_(pi//2)^(pi//2)(x^3+x\ cos x+tan^5x+1)dx , is 2 b. pi c. 0 d. 1

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. Let (d)/(dx)(f(x))=(e^(sinx))/(x),x gt 0. "If" int1^(4) (3)/(x)e^(sinx...

    Text Solution

    |

  2. If I=int(-1)^(1) {[x^(2)]+log((2+x)/(2-x))}dx where [x] denotes the gr...

    Text Solution

    |

  3. The value of int(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal t...

    Text Solution

    |

  4. If int(-1)^(4) f(x)=4 and int(2)^(7) (3-f(x))dx=7, then the value of i...

    Text Solution

    |

  5. The value of I=int(0)^(pi//2) (1)/(1+cosx)dx is

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dxis equal to

    Text Solution

    |

  7. The value of the integral int(a)^(b) (|x|)/(x)dx, a lt b is

    Text Solution

    |

  8. The value of the integral int(0)^(2pi)(sin2 theta)/(a-b cos theta)d ...

    Text Solution

    |

  9. The value of the integral int(0)^(1) x(1-x)^(n)dx, is

    Text Solution

    |

  10. The value of the integral int(0)^(3alpha) cosec (x-alpha)cosec(x-2al...

    Text Solution

    |

  11. The value of the integral int(0)^(pi) (sin k x)/(sin x)dx (k is an eve...

    Text Solution

    |

  12. The value of the integral int(0)^(1)(1)/(x^(2)+2x cos alpha+1)dxis equ...

    Text Solution

    |

  13. The greater value of F(x)=int(1)^(x) |t|dt on the interval [-1//2,1//2...

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  15. The value of the integral int(0)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  16. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  17. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  18. The value of integral int(-pi)^(pi) (cos ax-sin b x)^(2)dx, where (a a...

    Text Solution

    |

  19. The value of the definite integral int(0)^(1)(1+e^(-x^(2))) dx is

    Text Solution

    |

  20. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |