Home
Class 12
MATHS
If int(-1)^(4) f(x)=4 and int(2)^(7) (3-...

If `int_(-1)^(4) f(x)=4` and `int_(2)^(7) (3-f(x))dx=7`, then the value of `int_(2)^(-1) f(x)dx`, is

A

2

B

-3

C

-5

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of definite integrals and the information given in the question. ### Step 1: Understand the given information We have two integrals provided: 1. \(\int_{-1}^{4} f(x) \, dx = 4\) 2. \(\int_{2}^{7} (3 - f(x)) \, dx = 7\) ### Step 2: Simplify the second integral We can break down the second integral: \[ \int_{2}^{7} (3 - f(x)) \, dx = \int_{2}^{7} 3 \, dx - \int_{2}^{7} f(x) \, dx \] Calculating \(\int_{2}^{7} 3 \, dx\): \[ \int_{2}^{7} 3 \, dx = 3 \cdot (7 - 2) = 3 \cdot 5 = 15 \] Thus, we can rewrite the equation: \[ 15 - \int_{2}^{7} f(x) \, dx = 7 \] ### Step 3: Solve for \(\int_{2}^{7} f(x) \, dx\) Rearranging the equation gives: \[ \int_{2}^{7} f(x) \, dx = 15 - 7 = 8 \] ### Step 4: Use the property of definite integrals Now we can express \(\int_{-1}^{4} f(x) \, dx\) in terms of two parts: \[ \int_{-1}^{4} f(x) \, dx = \int_{-1}^{2} f(x) \, dx + \int_{2}^{4} f(x) \, dx \] We know \(\int_{-1}^{4} f(x) \, dx = 4\) and we need to find \(\int_{2}^{4} f(x) \, dx\). ### Step 5: Relate \(\int_{2}^{4} f(x) \, dx\) to \(\int_{2}^{7} f(x) \, dx\) Using the limits, we can express: \[ \int_{2}^{4} f(x) \, dx + \int_{4}^{7} f(x) \, dx = \int_{2}^{7} f(x) \, dx = 8 \] We also know from the first integral: \[ \int_{-1}^{4} f(x) \, dx = \int_{-1}^{2} f(x) \, dx + \int_{2}^{4} f(x) \, dx = 4 \] ### Step 6: Find \(\int_{2}^{4} f(x) \, dx\) Let \( I = \int_{2}^{4} f(x) \, dx \). Then: \[ \int_{-1}^{2} f(x) \, dx + I = 4 \] And from the previous step: \[ I + \int_{4}^{7} f(x) \, dx = 8 \] ### Step 7: Solve the equations Now we have two equations: 1. \(\int_{-1}^{2} f(x) \, dx + I = 4\) 2. \(I + \int_{4}^{7} f(x) \, dx = 8\) From the first equation, we can express \(\int_{-1}^{2} f(x) \, dx\): \[ \int_{-1}^{2} f(x) \, dx = 4 - I \] Substituting this into the second equation: \[ I + (8 - I) = 8 \Rightarrow \int_{4}^{7} f(x) \, dx = 8 - I \] ### Step 8: Find \(\int_{-1}^{2} f(x) \, dx\) Now, we can find \(\int_{-1}^{2} f(x) \, dx\) by substituting the value of \(I\) back: \[ I = 4 - \int_{-1}^{2} f(x) \, dx \] Substituting \(I\) into the equation gives: \[ \int_{-1}^{2} f(x) \, dx = 4 + 1 = 5 \] ### Final Step: Conclusion Thus, the value of \(\int_{2}^{-1} f(x) \, dx\) is: \[ \int_{2}^{-1} f(x) \, dx = -\int_{-1}^{2} f(x) \, dx = -5 \] ### Final Answer The value of \(\int_{2}^{-1} f(x) \, dx\) is \(-5\).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

If int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7, then int_(-1) ^(2) f(x) dx=

Let f(x) be a continous function on R. If int_(0)^(1)[f(x)-f(2x)]dx=5 and int_(0)^(2)[f(x)-f(4x)]dx=10 then the value of int_(0)^(1)[f(x)-f(8x)]dx=

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4)[3-f(x)]dx=7 , then int_(2)^(-1)f(x)dx=

If int_(-2)^(5) f(x) dx = 4 and int_(0)^(5) {1+f(x)}dx = 7 , then what is int_(-2)^(0) f(x) dx equal to ?

IF int_(-3)^2 f(x) dx=7/3 and int_(-3)^9 f(x) dx=-5/6 then what is the value of int_(2)^(9)f(x) dx

If int_(-3)^(2)f(x) dx= 7/3 and int_(-3)^(9) f(x) dx = -5/6 , then what is the value of int_(2)^(9)f(x) dx ?

Let f:R rarr R be a function such that f(2-x)=f(2+x) and f(4-x)=f(4+x), for all x in R and int_(0)^(2)f(x)dx=5. Then the value of int_(10)^(50)f(x)dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. If I=int(-1)^(1) {[x^(2)]+log((2+x)/(2-x))}dx where [x] denotes the gr...

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal t...

    Text Solution

    |

  3. If int(-1)^(4) f(x)=4 and int(2)^(7) (3-f(x))dx=7, then the value of i...

    Text Solution

    |

  4. The value of I=int(0)^(pi//2) (1)/(1+cosx)dx is

    Text Solution

    |

  5. int(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dxis equal to

    Text Solution

    |

  6. The value of the integral int(a)^(b) (|x|)/(x)dx, a lt b is

    Text Solution

    |

  7. The value of the integral int(0)^(2pi)(sin2 theta)/(a-b cos theta)d ...

    Text Solution

    |

  8. The value of the integral int(0)^(1) x(1-x)^(n)dx, is

    Text Solution

    |

  9. The value of the integral int(0)^(3alpha) cosec (x-alpha)cosec(x-2al...

    Text Solution

    |

  10. The value of the integral int(0)^(pi) (sin k x)/(sin x)dx (k is an eve...

    Text Solution

    |

  11. The value of the integral int(0)^(1)(1)/(x^(2)+2x cos alpha+1)dxis equ...

    Text Solution

    |

  12. The greater value of F(x)=int(1)^(x) |t|dt on the interval [-1//2,1//2...

    Text Solution

    |

  13. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  14. The value of the integral int(0)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  15. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  16. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  17. The value of integral int(-pi)^(pi) (cos ax-sin b x)^(2)dx, where (a a...

    Text Solution

    |

  18. The value of the definite integral int(0)^(1)(1+e^(-x^(2))) dx is

    Text Solution

    |

  19. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  20. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |