Home
Class 12
MATHS
int(0)^(1) |sin 2pi x|dx id equal to...

`int_(0)^(1) |sin 2pi x|dx` id equal to

A

0

B

`-(1)/(pi)`

C

`(1)/(pi)`

D

`(2)/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} |\sin(2\pi x)| \, dx \), we need to analyze the behavior of the function \( \sin(2\pi x) \) over the interval from 0 to 1. ### Step 1: Identify the points where \( \sin(2\pi x) \) changes sign The function \( \sin(2\pi x) \) completes one full cycle from 0 to 1. It is zero at: - \( x = 0 \) - \( x = \frac{1}{2} \) - \( x = 1 \) In the interval \( [0, 1] \): - \( \sin(2\pi x) \) is positive for \( x \in [0, \frac{1}{2}) \) - \( \sin(2\pi x) \) is negative for \( x \in (\frac{1}{2}, 1] \) ### Step 2: Break the integral into two parts We can split the integral at \( x = \frac{1}{2} \): \[ \int_{0}^{1} |\sin(2\pi x)| \, dx = \int_{0}^{\frac{1}{2}} \sin(2\pi x) \, dx + \int_{\frac{1}{2}}^{1} -\sin(2\pi x) \, dx \] ### Step 3: Calculate the first integral For the first integral, where \( \sin(2\pi x) \) is positive: \[ \int_{0}^{\frac{1}{2}} \sin(2\pi x) \, dx \] Using the integral formula \( \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \): \[ = -\frac{1}{2\pi} \cos(2\pi x) \bigg|_{0}^{\frac{1}{2}} = -\frac{1}{2\pi} \left[ \cos(\pi) - \cos(0) \right] \] \[ = -\frac{1}{2\pi} \left[ -1 - 1 \right] = \frac{2}{2\pi} = \frac{1}{\pi} \] ### Step 4: Calculate the second integral For the second integral, where \( \sin(2\pi x) \) is negative: \[ \int_{\frac{1}{2}}^{1} -\sin(2\pi x) \, dx = -\left(-\frac{1}{2\pi} \cos(2\pi x) \bigg|_{\frac{1}{2}}^{1}\right) \] \[ = \frac{1}{2\pi} \left[ \cos(2\pi) - \cos(\pi) \right] = \frac{1}{2\pi} \left[ 1 - (-1) \right] = \frac{1}{2\pi} \cdot 2 = \frac{1}{\pi} \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int_{0}^{1} |\sin(2\pi x)| \, dx = \frac{1}{\pi} + \frac{1}{\pi} = \frac{2}{\pi} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{1} |\sin(2\pi x)| \, dx \) is: \[ \boxed{\frac{2}{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//2) |sin pi s|dx is equal to

int_(0)^(pi//2) x sin x dx is equal to

int_(0)^(pi)(1)/(1+sin x)dx is equal to

int_(0)^(pi) x sin^(4) x dx is equal to

int_(0)^(2pi) (sin x-|sin x|) dx equal to

int_(0)^( pi)xf(sin x)dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to

int_0^(2pi) sin^5 (x/4) dx is equal to

What is int_(0)^(pi)e^(x) sin x dx equal to ?

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(0)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  2. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  3. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  4. The value of integral int(-pi)^(pi) (cos ax-sin b x)^(2)dx, where (a a...

    Text Solution

    |

  5. The value of the definite integral int(0)^(1)(1+e^(-x^(2))) dx is

    Text Solution

    |

  6. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  7. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  8. If I(1)=int(0)^(x) e^("zx "e^(-z^(2)))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  9. int(0)^(1//2) |sin pi s|dx is equal to

    Text Solution

    |

  10. The function F(x)=int(0)^(x) log((1-x)/(1+x))dx, is

    Text Solution

    |

  11. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  12. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  13. If F(x)and g(x) are two integralable functions defined on [a,b], the...

    Text Solution

    |

  14. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  15. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  16. The value of int(-1)^(1) x|x|dx, is

    Text Solution

    |

  17. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  18. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  19. Assuming that f is everywhere continuous, (1)/(c )int(ac)^(bc)f((x)/(c...

    Text Solution

    |

  20. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |