Home
Class 12
MATHS
If I(1)=int(0)^(x) e^("zx "e^(-z^(2)))dz...

If `I_(1)=int_(0)^(x) e^("zx "e^(-z^(2)))dz` and `I_(2)=int_(0)^(x) e^(-z^(2)//4)dz`, then

A

`I_(1)=e^(x)I_(2)`

B

`I_(1)=e^(x^(2))I_(2)`

C

`I_(1)=e^(x^(2)//2)I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_0^x e^{zx} e^{-z^2} \, dz \] \[ I_2 = \int_0^x e^{-\frac{z^2}{4}} \, dz \] ### Step 1: Rewrite \( I_1 \) We can rewrite \( I_1 \) by factoring out \( e^{\frac{x^2}{4}} \): \[ I_1 = e^{\frac{x^2}{4}} \int_0^x e^{-\left(z - \frac{x}{2}\right)^2} \, dz \] ### Step 2: Change of Variables in \( I_1 \) Let’s perform a change of variables in the integral. Set: \[ t = z - \frac{x}{2} \implies z = t + \frac{x}{2} \] Then, the limits change as follows: - When \( z = 0 \), \( t = -\frac{x}{2} \) - When \( z = x \), \( t = \frac{x}{2} \) The differential \( dz \) becomes \( dt \): \[ I_1 = e^{\frac{x^2}{4}} \int_{-\frac{x}{2}}^{\frac{x}{2}} e^{-t^2} \, dt \] ### Step 3: Relate \( I_1 \) to \( I_2 \) Notice that \( I_2 \) can be expressed in terms of the same limits: \[ I_2 = \int_0^x e^{-\frac{z^2}{4}} \, dz \] To relate \( I_1 \) and \( I_2 \), we can use the properties of integrals. The integral \( I_2 \) can be rewritten as: \[ I_2 = \int_0^x e^{-\frac{z^2}{4}} \, dz = 2 \int_0^{\frac{x}{2}} e^{-u^2} \, du \quad \text{(where } u = \frac{z}{2} \text{)} \] ### Step 4: Final Expression Thus, we can express \( I_1 \) in terms of \( I_2 \): \[ I_1 = e^{\frac{x^2}{4}} \cdot I_2 \] ### Conclusion The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = e^{\frac{x^2}{4}} I_2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

I=int_(0)^(1)e^(x^(2)-x)dx then

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^( pi/2)(e^(sin^(2)theta)sin theta cos theta d theta)/((2-sin^(2)theta)) then (where [ .] denotes greatest integer function)

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  2. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  3. If I(1)=int(0)^(x) e^("zx "e^(-z^(2)))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  4. int(0)^(1//2) |sin pi s|dx is equal to

    Text Solution

    |

  5. The function F(x)=int(0)^(x) log((1-x)/(1+x))dx, is

    Text Solution

    |

  6. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  7. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  8. If F(x)and g(x) are two integralable functions defined on [a,b], the...

    Text Solution

    |

  9. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  10. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  11. The value of int(-1)^(1) x|x|dx, is

    Text Solution

    |

  12. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  13. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  14. Assuming that f is everywhere continuous, (1)/(c )int(ac)^(bc)f((x)/(c...

    Text Solution

    |

  15. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  16. If f(x)=ae^(2x)+be^(x)+c x satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  17. The value of int(0)^(2) |cos((pix)/(2))| is

    Text Solution

    |

  18. If int(0)^(1) cot^(-1)(1-x-x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  19. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  20. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |