Home
Class 12
MATHS
Assuming that f is everywhere continuous...

Assuming that f is everywhere continuous, `(1)/(c )int_(ac)^(bc)f((x)/(c ))dx` is equal to

A

`(1)/(c )overset(b)underset(a)intf(x)dx`

B

`overset(b)underset(a)intf(x)dx`

C

`coverset(b)underset(a)intf(x)dx`

D

`coverset(bc^(2))underset(ac^(2))intf(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

1/c int _(a) ^(b) f ((x)/(c )) dx =

int_(a + c)^(b+c) f(x)dx=

If f(x) satifies of conditiohns of Rolle's theorem in [1,2] and f(x) is continuous in [1,2] then :.int_(1)^(2)f'(x)dx is equal to

Suppose that the graph of y=f(x) , contains the points (0,4) and (2,7) . If f' is continuous then int_(0)^(2) f'(x) dx is equal to

If int(dx)/(xf(x))=f(f(x))+c, then f(x) is equal to

If int f(x)dx=F(x),f(x) is a continuous function,then int(f(x))/(F(x))dx equals

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  2. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  3. Assuming that f is everywhere continuous, (1)/(c )int(ac)^(bc)f((x)/(c...

    Text Solution

    |

  4. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  5. If f(x)=ae^(2x)+be^(x)+c x satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  6. The value of int(0)^(2) |cos((pix)/(2))| is

    Text Solution

    |

  7. If int(0)^(1) cot^(-1)(1-x-x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  8. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  9. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  10. f(x)=|{:(sec x,cos x,,sec^(2) x+cosecx cot x),(cos^(2) x,cos^(2) x,,co...

    Text Solution

    |

  11. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  12. The value of int(0)^(1) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  13. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  14. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  15. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  16. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  17. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  18. To find the numberical value of int(-2)^(2) (px^(3)+qx+8)dx it is nece...

    Text Solution

    |

  19. Let f:R to R be continuous functions. Then the value of the integral i...

    Text Solution

    |

  20. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |