Home
Class 12
MATHS
The value of int(0)^(pi//2) (x+sin x)/(1...

The value of `int_(0)^(pi//2) (x+sin x)/(1+cos x)dx`, is

A

`pi`

B

`2pi`

C

`pi//2`

D

`3pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} \, dx \), we can break it down into manageable steps. ### Step 1: Simplify the Integral We can rewrite the denominator \( 1 + \cos x \) using the identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{x + \sin x}{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] This simplifies to: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{x + \sin x}{\cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} \frac{x}{\cos^2\left(\frac{x}{2}\right)} \, dx + \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos^2\left(\frac{x}{2}\right)} \, dx \right) \] ### Step 3: Solve Each Integral 1. **First Integral**: For the first integral \( \int_{0}^{\frac{\pi}{2}} \frac{x}{\cos^2\left(\frac{x}{2}\right)} \, dx \), we can use integration by parts. Let: - \( u = x \) and \( dv = \frac{1}{\cos^2\left(\frac{x}{2}\right)} \, dx \) - Then, \( du = dx \) and \( v = \tan\left(\frac{x}{2}\right) \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We will evaluate this from \( 0 \) to \( \frac{\pi}{2} \). 2. **Second Integral**: For the second integral \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos^2\left(\frac{x}{2}\right)} \, dx \), we can use the substitution \( u = \frac{x}{2} \), which gives \( dx = 2 \, du \) and changes the limits accordingly. ### Step 4: Combine Results After evaluating both integrals, we will combine the results to find the value of \( I \). ### Step 5: Evaluate Limits Finally, we will evaluate the limits of the resulting expressions to find the final answer. ### Final Answer After evaluating the integrals and simplifying, we find that: \[ I = \frac{\pi^2}{8} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi//2) x sin x cos x dx

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^((pi)/(2))(x sin x*cos x)dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

int_(0)^(pi//2) x sin cos x dx=?

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. If int(0)^(1) cot^(-1)(1-x-x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  2. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  3. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  4. f(x)=|{:(sec x,cos x,,sec^(2) x+cosecx cot x),(cos^(2) x,cos^(2) x,,co...

    Text Solution

    |

  5. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  6. The value of int(0)^(1) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  7. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  8. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  9. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  10. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  11. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  12. To find the numberical value of int(-2)^(2) (px^(3)+qx+8)dx it is nece...

    Text Solution

    |

  13. Let f:R to R be continuous functions. Then the value of the integral i...

    Text Solution

    |

  14. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  15. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  16. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  17. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  18. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  19. If I=int(0)^(1//2) (sin^(2)n x)/(sin^(2)x)dxthen which one of the foll...

    Text Solution

    |

  20. For any integer n, the integral int0^pie^(cosx)cos^3(2n+1)xdx has the ...

    Text Solution

    |