Home
Class 12
MATHS
If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=in...

If `I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx`
and ` I_(4)=int_(1)^(2) 2^(x^(2))dx` then

A

`I_(1) gt I_(2)` and `I_(4) gt I_(3)`

B

`I_(2)gt I_(1)` and `I_(3) gt I_(4)`

C

`I_(1) gt I_(2)` and `I_(3) gt I_(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the integrals \( I_1, I_2, I_3, \) and \( I_4 \) as defined in the question. Let's go through the steps systematically. ### Step 1: Define the Integrals We have the following integrals: - \( I_1 = \int_{0}^{1} 2^{x^2} \, dx \) - \( I_2 = \int_{0}^{1} 2^{x^3} \, dx \) - \( I_3 = \int_{1}^{2} 2^{x^2} \, dx \) - \( I_4 = \int_{1}^{2} 2^{x^3} \, dx \) ### Step 2: Compare \( I_1 \) and \( I_2 \) To compare \( I_1 \) and \( I_2 \), we note that for \( x \) in the interval \([0, 1]\): - \( x^2 \leq x^3 \) (since \( x \) is between 0 and 1) This implies: - \( 2^{x^2} \geq 2^{x^3} \) Thus, we can write: \[ I_1 = \int_{0}^{1} 2^{x^2} \, dx \geq \int_{0}^{1} 2^{x^3} \, dx = I_2 \] So, we conclude: \[ I_1 > I_2 \] ### Step 3: Compare \( I_3 \) and \( I_4 \) Now, we compare \( I_3 \) and \( I_4 \). For \( x \) in the interval \([1, 2]\): - \( x^2 \geq x^3 \) (since \( x \) is greater than 1) This implies: - \( 2^{x^2} \geq 2^{x^3} \) Thus, we can write: \[ I_3 = \int_{1}^{2} 2^{x^2} \, dx \geq \int_{1}^{2} 2^{x^3} \, dx = I_4 \] So, we conclude: \[ I_3 > I_4 \] ### Final Conclusion From our comparisons, we have: - \( I_1 > I_2 \) - \( I_3 > I_4 \) ### Summary of Results - \( I_1 > I_2 \) - \( I_3 > I_4 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

IfI_(1)=int_(0)^(1)2^(x^(2)),I_(2)=int_(0)^(1)2^(x^(3))dx,I_(3)=int_(1)^(2)2^(x^(2))dx,I_(4)=int_(1)^(2)2^(x^(3))dx then which of the following is/are true? I_(1)>I_(2)(b)I_(2)>I_(1)I_(3)>I_(4)(d)I_(3)

I=int_(0)^(1)e^(x^(2)-x)dx then

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

l_(1)=int_(0)^(1)3^(x^(2))dx,l_(2)=int_(0)^(1)3^(x^(3))dx,l_(3)=int_(1)^(2)3^(x^(2))dx,l_(4)=int_(1)^(2)3^(x^(3))dx then (i)I_(1)>I_(2)(ii)I_(2)>I_(1)(iii)I_(3)>I_(4)(iv)I_(4)>I_(3)

If i is the greatest of the definite integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)dx,I_(2)=int_(0)^(1)e^(-x^(2))cos^(2)xdx and I_(3)=int_(0)e^(-x^(2))dx,I_(4)=int_(0)^(1)e^(-((x^(2))/(2)))dx then (A)I_(1)(B)I_(2)(C)I_(3)(D)I_(4)

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  2. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  3. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  4. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  5. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  6. To find the numberical value of int(-2)^(2) (px^(3)+qx+8)dx it is nece...

    Text Solution

    |

  7. Let f:R to R be continuous functions. Then the value of the integral i...

    Text Solution

    |

  8. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  9. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  10. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  11. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  12. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  13. If I=int(0)^(1//2) (sin^(2)n x)/(sin^(2)x)dxthen which one of the foll...

    Text Solution

    |

  14. For any integer n, the integral int0^pie^(cosx)cos^3(2n+1)xdx has the ...

    Text Solution

    |

  15. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  16. If int(0)^(oo) (log(1+x^(2)))/(1+x^(2))dx=kint(0)^(oo) (log(1+x))/(1+x...

    Text Solution

    |

  17. If int(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6)then x is equal to

    Text Solution

    |

  18. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  19. The integral int(0)^(pi) (1)/(a^(2)-2 a cos x+1)dx (a lt 1) is

    Text Solution

    |

  20. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |