Home
Class 12
MATHS
The integral int(0)^(pi//2) f(sin 2 x)si...

The integral `int_(0)^(pi//2) f(sin 2 x)sin x dx` is equal to

A

`overset(pi//2)underset(0)int f(cos 2 x)sin x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)sin x dx`

B

`overset(pi//2)underset(0)int f(sin 2 x)cos x dx =sqrt(2)overset(pi//4)underset(0)int f(cos 2x)cos x dx`

C

`overset(pi//2)underset(0)int f(cos 2 x)cos x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)cos x dx`

D

`overset(pi//2)underset(0)int f(sin 2 x)cos x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \), we will use the property of definite integrals. ### Step-by-Step Solution: 1. **Apply the property of definite integrals**: We know that for any function \( f \), the following property holds: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Here, we will set \( a = \frac{\pi}{2} \). Thus, we can rewrite our integral as: \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f(\sin 2(\frac{\pi}{2} - x)) \sin(\frac{\pi}{2} - x) \, dx \] 2. **Simplify the expression**: Using the identities \( \sin(\frac{\pi}{2} - x) = \cos x \) and \( \sin 2(\frac{\pi}{2} - x) = \sin(2x) \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \] 3. **Combine the two expressions**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \quad \text{and} \quad I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx \] 4. **Factor out constants**: We can factor out \( \sqrt{2} \) from \( \sin x + \cos x \): \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, we have: \[ 2I = \sqrt{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin\left(x + \frac{\pi}{4}\right) \, dx \] 5. **Final expression for \( I \)**: Dividing both sides by 2 gives: \[ I = \frac{\sqrt{2}}{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin\left(x + \frac{\pi}{4}\right) \, dx \] ### Conclusion: The integral \( I \) can be expressed in terms of the function \( f \) and a transformed sine function. The exact value of \( I \) will depend on the specific form of \( f \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

Prove that the integral int_(0)^(pi) (sin 2 k x)/(sin x) dx equals zero if k an integer.

int_(0)^(pi//2)sin x.sin 2x dx=

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

The value of the definite integral int_(0)^((pi)/(2))sin x sin2x sin3xdx is equal to :

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  2. The integral int(0)^(pi) (1)/(a^(2)-2 a cos x+1)dx (a lt 1) is

    Text Solution

    |

  3. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  4. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  5. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  6. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  7. If f(x) and g(x) are continuous functions satisfying (x)=f(a-x) and g(...

    Text Solution

    |

  8. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  9. The value of the integral int(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx ...

    Text Solution

    |

  10. The value of the integral int(0)^(100pi) sqrt(1-cos2x)" d"xis

    Text Solution

    |

  11. The value of the integral int(-1//2)^(1//2) {((x+1)/(x-1))^(2)+((x-...

    Text Solution

    |

  12. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  13. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  14. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  15. The value of int(0)^(pi//2) (1)/(1+tan^(3)x)dx is

    Text Solution

    |

  16. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  17. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  18. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  19. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  20. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |