Home
Class 12
MATHS
The value of the integral int(2)^(4) (sq...

The value of the integral `int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx` is

A

`sqrt((3)/(32))`

B

`(sqrt(3))/(32)`

C

`(32)/(sqrt(3))`

D

`-(sqrt(3))/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x^4} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We start with the integral: \[ \int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x^4} \, dx \] We can factor out \( x^2 \) from the square root: \[ \sqrt{x^2 - 4} = \sqrt{x^2(1 - \frac{4}{x^2})} = x\sqrt{1 - \frac{4}{x^2}} \] Thus, the integrand becomes: \[ \frac{\sqrt{x^2 - 4}}{x^4} = \frac{x\sqrt{1 - \frac{4}{x^2}}}{x^4} = \frac{\sqrt{1 - \frac{4}{x^2}}}{x^3} \] Now the integral is: \[ \int_{2}^{4} \frac{\sqrt{1 - \frac{4}{x^2}}}{x^3} \, dx \] ### Step 2: Substitution Let \( t = 1 - \frac{4}{x^2} \). Then we differentiate \( t \): \[ dt = \frac{d}{dx}\left(1 - \frac{4}{x^2}\right) = 0 + \frac{8}{x^3} \, dx = \frac{8}{x^3} \, dx \] Thus, we have: \[ dx = \frac{x^3}{8} dt \] ### Step 3: Change the limits of integration When \( x = 2 \): \[ t = 1 - \frac{4}{2^2} = 1 - 1 = 0 \] When \( x = 4 \): \[ t = 1 - \frac{4}{4^2} = 1 - \frac{1}{4} = \frac{3}{4} \] So the limits change from \( x: 2 \to 4 \) to \( t: 0 \to \frac{3}{4} \). ### Step 4: Substitute into the integral Now substituting into the integral: \[ \int_{0}^{\frac{3}{4}} \sqrt{t} \cdot \frac{x^3}{8} \cdot \frac{1}{x^3} dt = \int_{0}^{\frac{3}{4}} \frac{\sqrt{t}}{8} dt \] This simplifies to: \[ \frac{1}{8} \int_{0}^{\frac{3}{4}} \sqrt{t} \, dt \] ### Step 5: Evaluate the integral The integral \( \int \sqrt{t} \, dt \) is: \[ \int \sqrt{t} \, dt = \frac{2}{3} t^{3/2} \] Now we evaluate it from \( 0 \) to \( \frac{3}{4} \): \[ \frac{1}{8} \left[ \frac{2}{3} t^{3/2} \right]_{0}^{\frac{3}{4}} = \frac{1}{8} \cdot \frac{2}{3} \left( \left( \frac{3}{4} \right)^{3/2} - 0 \right) \] Calculating \( \left( \frac{3}{4} \right)^{3/2} \): \[ \left( \frac{3}{4} \right)^{3/2} = \frac{3^{3/2}}{4^{3/2}} = \frac{3\sqrt{3}}{8} \] So we have: \[ \frac{1}{8} \cdot \frac{2}{3} \cdot \frac{3\sqrt{3}}{8} = \frac{1}{8} \cdot \frac{2 \cdot 3\sqrt{3}}{24} = \frac{3\sqrt{3}}{192} = \frac{\sqrt{3}}{64} \] ### Final Answer Thus, the value of the integral is: \[ \frac{\sqrt{3}}{32} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(4)sqrt(x)dx

Evaluate :int_(2)^(4)(sqrt(x^(2)-4))/(x^(4))dx

int_(2)^(4)(sqrt(x^(2)-4))/(4)dx is equal to

int_(-4)^(-2)(sqrt(x^(2)-4))/(4)dx

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of integral int_(-2)^(4) x[x]dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int_(-4)^(4)(x^(3)-6x^(2)+12x-8)dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  2. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  3. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  4. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  5. If f(x) and g(x) are continuous functions satisfying (x)=f(a-x) and g(...

    Text Solution

    |

  6. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  7. The value of the integral int(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx ...

    Text Solution

    |

  8. The value of the integral int(0)^(100pi) sqrt(1-cos2x)" d"xis

    Text Solution

    |

  9. The value of the integral int(-1//2)^(1//2) {((x+1)/(x-1))^(2)+((x-...

    Text Solution

    |

  10. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  11. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  12. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  13. The value of int(0)^(pi//2) (1)/(1+tan^(3)x)dx is

    Text Solution

    |

  14. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  15. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  16. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  17. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  18. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  19. If I=int(0)^(2pi) sin^(2) x" dx", then

    Text Solution

    |

  20. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |