Home
Class 12
MATHS
int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))...

`int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx` equals

A

`(pi)/(2sqrt(2))`

B

`(pi^(2))/(2)`

C

`(pi^(2))/(2sqrt(2))`

D

`(pi^(2))/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \), we can use a symmetry property of definite integrals. Here’s the step-by-step solution: ### Step 1: Define the Integral Let: \[ I = \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] ### Step 2: Use the Symmetry Property Using the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] we can rewrite \( I \): \[ I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\tan\left(\frac{\pi}{2} - x\right)} + \sqrt{\cot\left(\frac{\pi}{2} - x\right)} \right) dx \] Since \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \) and \( \cot\left(\frac{\pi}{2} - x\right) = \tan x \), we have: \[ I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\cot x} + \sqrt{\tan x} \right) dx \] ### Step 3: Combine the Two Integrals Now we can combine the two expressions for \( I \): \[ 2I = \int_0^{\frac{\pi}{2}} \left( x + \left( \frac{\pi}{2} - x \right) \right) \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\pi}{2} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] Thus: \[ I = \frac{\pi}{4} \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] ### Step 4: Evaluate the Integral Next, we need to evaluate: \[ \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] Using the substitution \( t = \tan x \), we have \( dx = \frac{1}{1+t^2} dt \) and the limits change from \( 0 \) to \( \infty \): \[ \int_0^{\frac{\pi}{2}} \sqrt{\tan x} \, dx = \int_0^{\infty} \frac{\sqrt{t}}{1+t^2} dt \] And similarly for \( \sqrt{\cot x} \): \[ \int_0^{\frac{\pi}{2}} \sqrt{\cot x} \, dx = \int_0^{\infty} \frac{1}{\sqrt{t} (1+t^2)} dt \] ### Step 5: Combine the Results Both integrals yield the same value, so: \[ \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = 2 \int_0^{\infty} \frac{\sqrt{t}}{1+t^2} dt \] The integral \( \int_0^{\infty} \frac{\sqrt{t}}{1+t^2} dt \) can be evaluated using the beta function or gamma function, yielding \( \frac{\pi}{2\sqrt{2}} \). ### Step 6: Final Calculation Thus: \[ \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = 2 \cdot \frac{\pi}{2\sqrt{2}} = \frac{\pi}{\sqrt{2}} \] Finally, substituting back into our expression for \( I \): \[ I = \frac{\pi}{4} \cdot \frac{\pi}{\sqrt{2}} = \frac{\pi^2}{4\sqrt{2}} \] ### Final Answer \[ I = \frac{\pi^2}{4\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

int sqrt(cot x)dx

int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

Evaluate int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x))dx

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  2. If f(x) and g(x) are continuous functions satisfying (x)=f(a-x) and g(...

    Text Solution

    |

  3. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  4. The value of the integral int(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx ...

    Text Solution

    |

  5. The value of the integral int(0)^(100pi) sqrt(1-cos2x)" d"xis

    Text Solution

    |

  6. The value of the integral int(-1//2)^(1//2) {((x+1)/(x-1))^(2)+((x-...

    Text Solution

    |

  7. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  8. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  9. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  10. The value of int(0)^(pi//2) (1)/(1+tan^(3)x)dx is

    Text Solution

    |

  11. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  12. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  13. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  14. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  15. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  16. If I=int(0)^(2pi) sin^(2) x" dx", then

    Text Solution

    |

  17. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  18. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  19. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  20. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |