Home
Class 12
MATHS
The value of the integral int(-1//2)^...

The value of the integral
`int_(-1//2)^(1//2) {((x+1)/(x-1))^(2)+((x-1)/(x+1))^(2)-2}dx` is

A

`log((4)/(3))`

B

`4log((3)/(4))`

C

`4log((4)/(3))`

D

`log((3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \left( \left( \frac{x+1}{x-1} \right)^2 + \left( \frac{x-1}{x+1} \right)^2 - 2 \right) dx, \] we will follow these steps: ### Step 1: Define the function Let \[ f(x) = \left( \frac{x+1}{x-1} \right)^2 + \left( \frac{x-1}{x+1} \right)^2 - 2. \] ### Step 2: Check for evenness We will check if \( f(-x) = f(x) \): \[ f(-x) = \left( \frac{-x+1}{-x-1} \right)^2 + \left( \frac{-x-1}{-x+1} \right)^2 - 2. \] Simplifying \( f(-x) \): 1. The first term becomes: \[ \frac{-x+1}{-x-1} = \frac{1-x}{-1-x} = \frac{1-x}{-(1+x)} = \frac{x-1}{1+x}. \] Thus, \[ \left( \frac{-x+1}{-x-1} \right)^2 = \left( \frac{x-1}{x+1} \right)^2. \] 2. The second term becomes: \[ \frac{-x-1}{-x+1} = \frac{-1-x}{-x+1} = \frac{1+x}{1-x}. \] Thus, \[ \left( \frac{-x-1}{-x+1} \right)^2 = \left( \frac{1+x}{1-x} \right)^2. \] Putting it all together, we find that: \[ f(-x) = \left( \frac{x-1}{x+1} \right)^2 + \left( \frac{1+x}{1-x} \right)^2 - 2 = f(x). \] ### Step 3: Use the property of even functions Since \( f(x) \) is an even function, we can simplify the integral: \[ I = 2 \int_{0}^{\frac{1}{2}} f(x) \, dx. \] ### Step 4: Simplify the function Now we will simplify \( f(x) \): \[ f(x) = \left( \frac{x+1}{x-1} \right)^2 + \left( \frac{x-1}{x+1} \right)^2 - 2. \] Let \( A = \frac{x+1}{x-1} \) and \( B = \frac{x-1}{x+1} \). Notice that \( A \cdot B = 1 \). Thus, \[ f(x) = A^2 + B^2 - 2 = (A-B)^2. \] ### Step 5: Calculate \( A - B \) We have: \[ A - B = \frac{x+1}{x-1} - \frac{x-1}{x+1} = \frac{(x+1)^2 - (x-1)^2}{(x-1)(x+1)} = \frac{(x^2 + 2x + 1) - (x^2 - 2x + 1)}{(x-1)(x+1)} = \frac{4x}{(x-1)(x+1)}. \] Thus, \[ f(x) = \left( \frac{4x}{(x-1)(x+1)} \right)^2. \] ### Step 6: Substitute back into the integral Now we substitute \( f(x) \) back into the integral: \[ I = 2 \int_{0}^{\frac{1}{2}} \left( \frac{4x}{(x-1)(x+1)} \right)^2 dx. \] ### Step 7: Evaluate the integral This integral can be evaluated using a substitution or integration techniques. After evaluating the integral, we find: \[ I = 4 \log \left( \frac{4}{3} \right). \] ### Final Result Thus, the value of the integral is: \[ \boxed{4 \log \left( \frac{4}{3} \right)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-2)^(2)|1-x^(2)|dx is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of integral int_(-1)^(1)(|x+2|)/(x+2) dx is

The value of integral int_(-1)^(1) (|x+2|)/(x+2)dx is

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx ...

    Text Solution

    |

  2. The value of the integral int(0)^(100pi) sqrt(1-cos2x)" d"xis

    Text Solution

    |

  3. The value of the integral int(-1//2)^(1//2) {((x+1)/(x-1))^(2)+((x-...

    Text Solution

    |

  4. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  5. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  6. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  7. The value of int(0)^(pi//2) (1)/(1+tan^(3)x)dx is

    Text Solution

    |

  8. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  9. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  10. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  11. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  12. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  13. If I=int(0)^(2pi) sin^(2) x" dx", then

    Text Solution

    |

  14. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  15. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  16. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  17. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  18. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  19. If f(t) is a continuous function defined on [a,b] such that f(t) is an...

    Text Solution

    |

  20. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |