Home
Class 12
MATHS
If (d)/(dx)f(x)=g(x) for a le x le b th...

If `(d)/(dx)f(x)=g(x)` for `a le x le b` then, `int_(a)^(b) f(x) g(x) dx` equals

A

`f(b)-f(a)`

B

`g(b)-g(a)`

C

`([f(b)]^(2)-[f(a)]^(2))/(2)`

D

`([g(b)]^(2)-[g(a)]^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{a}^{b} f(x) g(x) \, dx \) given that \( \frac{d}{dx} f(x) = g(x) \). ### Step-by-Step Solution: 1. **Understand the Given Information**: We know that \( g(x) = \frac{d}{dx} f(x) \). This means that \( g(x) \) is the derivative of \( f(x) \). 2. **Use Integration by Parts**: We can use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Here, we can let: - \( u = f(x) \) (hence \( du = g(x) \, dx \)) - \( dv = g(x) \, dx \) (which means \( v = f(x) \)) 3. **Apply Integration by Parts**: Applying integration by parts, we have: \[ \int_{a}^{b} f(x) g(x) \, dx = \left[ f(x) f(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g(x) \, dx \] 4. **Evaluate the Boundary Terms**: The boundary terms become: \[ \left[ f(x) f(x) \right]_{a}^{b} = f(b) f(b) - f(a) f(a) = f(b)^2 - f(a)^2 \] 5. **Combine the Results**: We can rearrange our equation: \[ \int_{a}^{b} f(x) g(x) \, dx + \int_{a}^{b} f(x) g(x) \, dx = f(b)^2 - f(a)^2 \] This simplifies to: \[ 2 \int_{a}^{b} f(x) g(x) \, dx = f(b)^2 - f(a)^2 \] 6. **Solve for the Integral**: Dividing both sides by 2 gives us: \[ \int_{a}^{b} f(x) g(x) \, dx = \frac{1}{2} (f(b)^2 - f(a)^2) \] ### Final Result: Thus, we conclude that: \[ \int_{a}^{b} f(x) g(x) \, dx = \frac{1}{2} (f(b)^2 - f(a)^2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

int[(d)/(dx)f(x)]dx=

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

int_a^b[d/dx(f(x))]dx

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

If (d)/(dx)[f(x)]=4x^(3)-(3)/(x^(4)) solve that f(2)=0 then find f(x)

Let f:[2,5] rarr [2,5] be a bijective function such that d/(dx)f^-1(x)>0AA(x)in[2, 5] then int_2^5(f(x)+f^-1(x)) s dx is equal to 7k. then value of k is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of int(0)^(pi//2) (1)/(1+tan^(3)x)dx is

    Text Solution

    |

  2. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  3. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  4. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  5. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  6. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  7. If I=int(0)^(2pi) sin^(2) x" dx", then

    Text Solution

    |

  8. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  9. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  10. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  11. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  12. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  13. If f(t) is a continuous function defined on [a,b] such that f(t) is an...

    Text Solution

    |

  14. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  15. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  16. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  17. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  18. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  19. If F(x)=(1)/(x^(2))int(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

    Text Solution

    |

  20. If f(x) is an odd function defined on [-T//2,T//2] and has period T, t...

    Text Solution

    |