Home
Class 12
MATHS
For any integer n,the integral int(0)^(3...

For any integer n,the integral `int_(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" dx"` has the value

A

`pi`

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} e^{\sin^2 x} \cos^3((2n+1)x) \, dx \), we will use a property of definite integrals. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\pi} e^{\sin^2 x} \cos^3((2n+1)x) \, dx \] ### Step 2: Use the property of definite integrals We will apply the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \pi \), so we have: \[ I = \int_{0}^{\pi} e^{\sin^2(\pi - x)} \cos^3((2n+1)(\pi - x)) \, dx \] ### Step 3: Simplify the integral Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} e^{\sin^2 x} \cos^3((2n+1)(\pi - x)) \, dx = \int_{0}^{\pi} e^{\sin^2 x} \cos^3(-(2n+1)x) \, dx \] Since \( \cos(-\theta) = \cos(\theta) \), we have: \[ I = \int_{0}^{\pi} e^{\sin^2 x} (-\cos((2n+1)x))^3 \, dx = -\int_{0}^{\pi} e^{\sin^2 x} \cos^3((2n+1)x) \, dx \] ### Step 4: Combine the results Now we have: \[ I = -I \] This implies: \[ 2I = 0 \implies I = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\pi} e^{\sin^2 x} \cos^3((2n+1)x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

For any integer n, the integral int_(0)^( pi)e^(cos^(2))cos^(3)(2n+1)xdx has the value

The value of int_(0)^( pi)e^(sin^(2)x)cos(2n+1)xdx=

Q.int_(0)^( pi)(e^(cos^(2)x)(cos^(3)(2n+1)xdx,n in I

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

E valuate the integration int_(0)^((pi)/(2))sin^(3)x cos^(2)xdx

For any value of nin I, int_(0)^(pi)e^(cos^(2)x)cos^(3)[(2n+1)x]dx equals

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of int0^pi(sin(n+1/2)x)/(sin(x/2)dx is

    Text Solution

    |

  2. If (d)/(dx)f(x)=g(x) for a le x le b then, int(a)^(b) f(x) g(x) dx eq...

    Text Solution

    |

  3. For any integer n,the integral int(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" ...

    Text Solution

    |

  4. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  5. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  6. If I=int(0)^(2pi) sin^(2) x" dx", then

    Text Solution

    |

  7. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  8. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  9. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  10. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  11. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  12. If f(t) is a continuous function defined on [a,b] such that f(t) is an...

    Text Solution

    |

  13. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  14. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  15. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  16. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  17. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  18. If F(x)=(1)/(x^(2))int(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

    Text Solution

    |

  19. If f(x) is an odd function defined on [-T//2,T//2] and has period T, t...

    Text Solution

    |

  20. If for every integer n, int(n)^(n+1) f(x)dx=n^(2), then the value of ...

    Text Solution

    |