Home
Class 12
MATHS
If F(x)=(1)/(x^(2))int(4)^(x) [4t^(2)-2F...

If F(x)`=(1)/(x^(2))int_(4)^(x) [4t^(2)-2F'(t)]dt` then F'(4) equals

A

32

B

`32//3`

C

`32//9`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ F'(x) = \frac{1}{x^2} \int_{4}^{x} [4t^2 - 2F'(t)] dt \] ### Step 1: Separate the integral We can separate the integral into two parts: \[ F'(x) = \frac{1}{x^2} \left( \int_{4}^{x} 4t^2 dt - 2 \int_{4}^{x} F'(t) dt \right) \] ### Step 2: Calculate the first integral The first integral can be calculated as follows: \[ \int_{4}^{x} 4t^2 dt = 4 \left[ \frac{t^3}{3} \right]_{4}^{x} = 4 \left( \frac{x^3}{3} - \frac{4^3}{3} \right) = \frac{4}{3} (x^3 - 64) \] ### Step 3: Calculate the second integral The second integral is: \[ \int_{4}^{x} F'(t) dt = F(x) - F(4) \] ### Step 4: Substitute back into the equation Substituting both integrals back into the equation gives us: \[ F'(x) = \frac{1}{x^2} \left( \frac{4}{3} (x^3 - 64) - 2(F(x) - F(4)) \right) \] ### Step 5: Simplify the equation This simplifies to: \[ F'(x) = \frac{4}{3x^2} (x^3 - 64) - \frac{2}{x^2} (F(x) - F(4)) \] ### Step 6: Evaluate at \( x = 4 \) To find \( F'(4) \), we substitute \( x = 4 \): \[ F'(4) = \frac{4}{3 \cdot 4^2} (4^3 - 64) - \frac{2}{4^2} (F(4) - F(4)) \] Since \( F(4) - F(4) = 0 \), the second term vanishes: \[ F'(4) = \frac{4}{3 \cdot 16} (64 - 64) = 0 \] ### Step 7: Evaluate the first term Now calculating the first term: \[ F'(4) = \frac{4}{48} \cdot 0 = 0 \] ### Step 8: Solve for \( F'(4) \) Thus, we find: \[ F'(4) = 0 \] ### Final Answer The value of \( F'(4) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x^(2))int_(4)^(x)(4t^(2)-2f'(t)) dt,then f'(4) is equal to:

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  2. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  3. If F(x)=(1)/(x^(2))int(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

    Text Solution

    |

  4. If f(x) is an odd function defined on [-T//2,T//2] and has period T, t...

    Text Solution

    |

  5. If for every integer n, int(n)^(n+1) f(x)dx=n^(2), then the value of ...

    Text Solution

    |

  6. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  7. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  8. The value of int(-1)^(1) x|x|dx, is

    Text Solution

    |

  9. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  10. The value of the integral int(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

    Text Solution

    |

  11. int(1)^(-1) (x^(3)+|x|+1)/(x^(2)+2|x|+1)dxis equal to

    Text Solution

    |

  12. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  13. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  14. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  15. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  16. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  18. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  19. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  20. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |